INITIAL ENGINEERING AND DESIGN FOR CO₂ CAPTURE FROM ETHANOL FACILITIES

Project Number: DE-FE0031938
U.S. Department of Energy National Energy Technology Laboratory
Carbon Management Project Review Meeting
August 15–19, 2022

Jason Laumb
Director of Advanced Energy Systems Initiatives
This material is based upon work supported by the Department of Energy under Award Number DE-FE0031938. This was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or presents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
PROJECT MANAGEMENT

Jason Laumb
Principal Investigator (PI)
Task 1.0 – Project Management and Planning

Kerryanne Leroux
Task 2.0 – Project Engineering and Design

John Kay
Task 3.0 – Determine Pre-FEED Cost Estimate
AGENDA

• Project Overview
• Red Trail Energy, LLC (RTE) CCS
• Technology and Scope
• Project Status
• Summary and Questions
• Project Budget: $1,949,954
 – $1,559,954 DOE funds
 – $390,000 cost share
 ♦ $375,000 RTE
 ♦ $15,000 EERC
• Period of Performance (POP): Oct 1, 2020 – Sep 30, 2022
• Goal: Develop an initial engineering design (IED) and estimated cost for capture and compression of CO₂ generated from an operational ethanol production facility
PROJECT OBJECTIVES

- Design a hybrid capture system using CO$_2$ emissions from both bioprocessing and heat production at the RTE facility.
- Complete a pre-front-end engineering and design (FEED) analysis of the hybrid capture system, which includes environmental health and safety (EH&S), constructability report, identification of permits, and corporate approvals.
- Complete a techno-economic assessment (TEA) in accordance with DOE’s methodology, as demonstrated by the bituminous baseline study.
The first North Dakota Class VI permit approved October 19, 2021.
RTE SITE: Excellent CCS Case Study

- **Broom Creek Formation:** >10 billion tonnes CO₂ storage potential

- **RTE CCS:** ~6 million tonnes CO₂ (assuming 20-year injection period)

CO₂ capture potential
- ~310,000 tonnes/yr of CO₂ from bioprocessing, heat production.
- Bioprocessing CO₂ stream is nearly pure.

Geologic storage potential:
- Broom Creek Formation
- 6400 ft directly underlying RTE facility, ~300 ft thick
RTE CCS IMPLEMENTATION

First commercial-scale CCS operations in North Dakota (June 2022)

Flow Line (underground, > 6ft)

Capture System

+groundwater wells and soil gas profile stations at each wellsite

Monitoring Well

Injection Well

Richardson

EERC | UNIVERSITY OF NORTH DAKOTA
PROJECT TECHNOLOGY

Hybrid Capture System

- CO₂ from Bioprocessing
- Steam/Electricity
- CO₂ from Heat Production

Injection for Geologic Storage

Image Credit: Energy & Environmental Research Center
ETHANOL–CCS PROCESS WITH NOVEL HYBRID CAPTURE SYSTEM

- Corn Feedstock
- Centrifuge Evaporators Dryers
- Byproducts*
- Natural Gas Steam Boilers
- Heat Production CO₂ Stream
- Steam Heat
- Bioprocessing CO₂ Stream
- Chemical Absorption
- Liquefaction
- Hybrid Capture System
- Energy
- CO₂ Pipeline**
- Geologic Storage
- **Developing separately

*Includes distillers grains, etc.

Image Credit: Energy & Environmental Research Center
1. Project Management and Planning
2. Project Engineering and Design
3. Determine Pre-FEED Cost Estimate

POP: Oct 1, 2020 – Sep 30, 2022

<table>
<thead>
<tr>
<th>Milestone Title</th>
<th>Planned Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 – Design Basis Determined</td>
<td>End of Month 4</td>
</tr>
<tr>
<td>M2 – Complete Pre-FEED Analysis</td>
<td>End of Month 12</td>
</tr>
<tr>
<td>M3 – Complete Design</td>
<td>End of Month 12</td>
</tr>
<tr>
<td>M4 – Complete TEA</td>
<td>End of Month 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUCCESS CRITERIA

✓ Completion of design basis for hybrid capture at RTE.

✓ Completion of TEA for design basis at RTE.

✓ Pre-FEED-level cost estimate for implementation of hybrid capture technology at RTE.

✓ Designed capture process that provides negative CO₂ emissions for RTE.

☐ RTE management approval of hybrid capture design such that it is considered by the RTE Board.

Photograph by Lars Plougmann
HYBRID–CCS SCENARIOS:
Design Basis and Operational Estimates

<table>
<thead>
<tr>
<th>Scenario:</th>
<th>Maximum Amine Capture</th>
<th>Alternative Amine Capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Capture Design</td>
<td>90% of CO₂ from boiler flue gas</td>
<td>45% of CO₂ from boiler flue gas</td>
</tr>
<tr>
<td>Annual CO₂ Rate</td>
<td>~130,000 tonnes (~310,000 tonnes total)</td>
<td>~65,000 tonnes (~245,000 tonnes total)</td>
</tr>
<tr>
<td>Equipment Differences</td>
<td>New boiler and flue gas blower; added compression and dehydration</td>
<td>Smaller amine unit</td>
</tr>
<tr>
<td>Power</td>
<td>3.3 MW</td>
<td>0.8 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>54 MMBtu/hr</td>
<td>27 MMBtu/hr</td>
</tr>
</tbody>
</table>

In addition to bioprocessing–liquefaction system and existing ethanol-processing operations.
TASK 1.0 – PROJECT MANAGEMENT AND PLANNING

- Subtask 1.1 – Project Management Plan (PMP)
- Subtask 1.2 – Technology Maturation Plan (TMP)
- Subtask 1.3 – TEA and Technology EH&S Risk Assessment
 ✓ Hazardous Operations (HAZOP) Assessment
- Subtask 1.4 – State Point Data Table
- Subtask 1.5 – Life Cycle Assessment (LCA) Report
 ✓ NETL openLCA modeling
 ✓ Investigate renewable heat
 * Corn stover gasification for steam generation
 ✓ Compare to low-carbon fuel model
 * GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation)
Initial Study

<table>
<thead>
<tr>
<th>Option</th>
<th>Global Warming Potential, kg CO₂ eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol w/o CCS</td>
<td>-3.50E+08</td>
</tr>
<tr>
<td>Ethanol + Hybrid CCS</td>
<td>-3.00E+08</td>
</tr>
<tr>
<td>Ethanol + Alt-Hybrid CCS</td>
<td>-2.50E+08</td>
</tr>
</tbody>
</table>

RENEWABLE HEAT STUDY

<table>
<thead>
<tr>
<th>Option</th>
<th>Global Warming Potential, kg CO₂ eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol w/o CCS</td>
<td>-3.00E+08</td>
</tr>
<tr>
<td>Ethanol + Hybrid CCS</td>
<td>-2.50E+08</td>
</tr>
<tr>
<td>Ethanol + Alt-Hybrid CCS</td>
<td>-2.00E+08</td>
</tr>
</tbody>
</table>

Compared to Ethanol without CCS, includes ethanol transportation to market
TASK 2.0 – PROJECT ENGINEERING AND DESIGN

- **Subtask 2.1 – Design Basis**
- **Subtask 2.2 – Utility Requirements**
- **Subtask 2.3 – Flow Diagrams**
 - Existing diagrams updated
 - Major equipment list
- **Subtask 2.4 – Balance of Plant (BOP)**
 - Interconnection requirements
 - Technology island configurations
- **Subtask 2.5 – Develop Permitting Strategy**
- **Subtask 2.6 – Optimization Studies**
 - Redundancy, materials of construction
 - Scoping/optimization
DESIGN BASIS SUMMARY

<table>
<thead>
<tr>
<th>Component</th>
<th>Bioprocessing–Liquefaction</th>
<th>Flue Gas – Chemical Absorption</th>
<th>Hybrid Capture System</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Capture Design</td>
<td>100% of CO₂ from fermentation</td>
<td>90% of CO₂ from boiler flue gas</td>
<td>>90% CO₂ capture from emissions</td>
</tr>
<tr>
<td>Annual CO₂ Rate</td>
<td>~180,000 tonnes</td>
<td>~130,000 tonnes</td>
<td>~310,000 tonnes</td>
</tr>
<tr>
<td>Major Equipment</td>
<td>Blower, compression, dehydration, refrigeration, distillation</td>
<td>Boiler, blower, amine system, compression, dehydration</td>
<td>[combined equipment]</td>
</tr>
<tr>
<td>Power</td>
<td>3.8 MW</td>
<td>3.0 MW</td>
<td>6.8 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>4.3 MMBtu/day</td>
<td>1300 MMBtu/day</td>
<td>1300 MMBtu/day</td>
</tr>
<tr>
<td>Water</td>
<td>82,000 gallons/day</td>
<td>420,000 gallons/day</td>
<td>500,000 gallons/day</td>
</tr>
</tbody>
</table>
HYBRID–CCS SCENARIOS INVESTIGATED

<table>
<thead>
<tr>
<th>Capture Included per Scenario</th>
<th>Bioprocessing–Liquefaction</th>
<th>Flue Gas – Chemical Absorption</th>
<th>Hybrid Capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Capture</td>
<td>100%</td>
<td>90%</td>
<td>>90%</td>
</tr>
<tr>
<td>Alt-Capture*</td>
<td>100%</td>
<td>45%</td>
<td>~80%</td>
</tr>
</tbody>
</table>

*Alternative design for an amine system within existing RTE boiler and liquefaction capacities.
TASK 3.0 – DETERMINE PRE-FEED COST ESTIMATE

- **Subtask 3.1 – Develop Capture Island Cost Estimate**
 - Determine pre-FEED-level costs
 - Estimate postcombustion capture costs
 - Integrate with compression and liquefaction subsystems

- **Subtask 3.2 – Develop BOP Cost Estimate**
 - Complete integration of the hybrid capture system with the remainder of the plant

- **Subtask 3.3 – Advanced Solvent Modeling Study**
 - Model advanced solvent technologies
 - Investigate potential system sizing and cost improvements
 - Compare previous estimates
HYBRID–CCS PRELIMINARY RESULTS:
Cost Estimates*

<table>
<thead>
<tr>
<th>Item (2019$)</th>
<th>Bioprocessing – Liquefaction</th>
<th>Flue Gas – Chemical Absorption</th>
<th>Hybrid Capture System</th>
<th>Alternative Amine Scenario</th>
<th>Alternative Hybrid Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Investment</td>
<td>$32MM</td>
<td>$59MM</td>
<td>$91MM</td>
<td>$25MM</td>
<td>$57MM</td>
</tr>
<tr>
<td>Cost of CO₂ Captured</td>
<td>$35/tonne</td>
<td>$96/tonne</td>
<td>$55/tonne</td>
<td>$80/tonne</td>
<td>$45/tonne</td>
</tr>
</tbody>
</table>

*Additional Notes
- Installed equipment cost estimates (i.e., do not include civil engineering).
- Estimate accuracy is about ±30% based on DOE modeling and limited vendor quotes.
HYBRID–CCS PRELIMINARY RESULTS:
Advanced Solvent Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Flue Gas – Chemical Absorption</th>
<th>Hybrid Capture System</th>
<th>Advanced Solvent</th>
<th>Advanced Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>1300 MMBtu/day</td>
<td>1300 MMBtu/day</td>
<td>950 MMBtu/day</td>
<td>950 MMBtu/day</td>
</tr>
<tr>
<td>Cost of CO₂ Captured</td>
<td>$96/tonne</td>
<td>$55/tonne</td>
<td>$93/tonne</td>
<td>$54/tonne</td>
</tr>
</tbody>
</table>

*Additional Notes
- Only natural gas showed significant variation between solvents.
- Estimate accuracy is about ±30% based on DOE modeling and limited vendor quotes.
FUTURE HYBRID CCS PLANS

- Combined heat and power (CHP) investigations
 - Fossil and renewable
 - Renewable feedstock logistics
 - Implementation cost estimates
 - State Energy Research Center of North Dakota (SERC)

- FEED investigations
 - Refined advanced solvent modeling
 - Refined cost estimates

- LCA revisions
 - Following FEED efforts
 - Following in-depth CHP investigations
 - Continued GREET comparisons
Major Activities Conducted
- Pre-FEED
 - Design basis
 - Processing design
 - Engineered plot plan
 - HAZOP assessment
- TEA modeling
 - Advanced solvent modeling
- LCA modeling
 - Renewable heat
 - GREET comparisons

DOE Deliverables Submitted
- PMP
- TMP
- HAZOP report
- Pre-FEED report
- State point data table
- TEA report
- LCA report
THANK YOU

Critical Challenges. Practical Solutions.
PROJECT ORGANIZATION

Project Partners
- DOE
- Red Trail Energy
- Energy & Environmental Research Center
- Trimeric
- KLJ

Lead Organization
- EERC
 - Project Manager
 - Jason Laumb

Task 1: Project Management and Planning
- Lead
 - J. Laumb
- Task Assist
 - J. Kay

Task 2: Project Engineering and Design
- Lead
 - K. Leroux
- Task Assist
 - Trimeric
 - KLJ
- Red Trail Energy

Task 3: Determine Pre-FEED Cost Estimate
- Lead
 - J. Kay
- Task Assist
 - Trimeric
 - KLJ
- Red Trail Energy
PROJECT TIMELINE

Task 1.0 – Project Management and Planning
- **Subtask 1.1 – Project Management Plan**
- **Subtask 1.2 – Technology Maturation Plan**
- **Subtask 1.3 – Techno-Economic Analysis (TEA) and Technology EH&S Risk Assessment**
- **Subtask 1.4 – State Point Data Table**
- **Subtask 1.5 – Life-Cycle Assessment (LCA) Report**

Task 2.0 – Project Engineering and Design
- **Subtask 2.1 – Design Basis**
- **Subtask 2.2 – Utility Requirements**
- **Subtask 2.3 – Flow Diagrams**
- **Subtask 2.4 – Balance of Plant**
- **Subtask 2.5 – Develop Permitting Strategy**
- **Subtask 2.6 – Optimization Studies**

Task 3.0 – Determine Pre-FEED Cost Estimate
- **Subtask 3.1 – Develop Capture Island Cost Estimate**
- **Subtask 3.2 – Develop BOP Cost Estimate**
- **Subtask 3.3 – Advanced Solvent Modeling (ASM)**

<table>
<thead>
<tr>
<th>Milestone (M)</th>
<th>Deliverables (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 – Design basis determined</td>
<td>D1 – Updated Project Management Plan</td>
</tr>
<tr>
<td>M2 – Complete pre-FEED analysis</td>
<td>D2a – Technology Maturation Plan (TMP)</td>
</tr>
<tr>
<td>M3 – Complete design</td>
<td>D3 – TEA and Technology EH&S Risk Assessment</td>
</tr>
<tr>
<td>M4 – Complete TEA</td>
<td>D4 – State Point Data Table</td>
</tr>
<tr>
<td></td>
<td>D5 – HAZOP Review</td>
</tr>
<tr>
<td></td>
<td>D6 – Pre-FEED Report</td>
</tr>
<tr>
<td></td>
<td>D7a – LCA Report</td>
</tr>
<tr>
<td></td>
<td>D7b – LCA Addendum</td>
</tr>
<tr>
<td></td>
<td>D8 – Advanced Solvent Modeling Addendum</td>
</tr>
</tbody>
</table>