EERC. NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

INITIAL ENGINEERING AND DESIGN FOR CO₂ CAPTURE FROM ETHANOL FACILITIES

Project Number: DE-FE0031938 U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15–19, 2022

> Jason Laumb Director of Advanced Energy Systems Initiatives

DOE DISCLAIMER

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031938. This was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or presents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PROJECT MANAGEMENT

Jason Laumb Principal Investigator (PI) Task 1.0 – Project Management and Planning

Kerryanne Leroux

Task 2.0 – Project Engineering and Design

John Kay

Task 3.0 – Determine Pre-FEED Cost Estimate

AGENDA

- Project Overview
- Red Trail Energy, LLC (RTE) CCS
- Technology and Scope
- Project Status
- Summary and Questions

PROJECT OVERVIEW

- Project Budget: \$1,949,954
 - \$1,559,954 DOE funds
 - \$390,000 cost share
 - ◆ \$375,000 RTE
 - \$15,000 EERC

EERC NORTH DAKOTA

- Period of Performance (POP): Oct 1, 2020 Sep 30, 2022
- Goal: Develop an initial engineering design (IED) and estimated cost for capture and compression of CO₂ generated from an operational ethanol production facility

PROJECT OBJECTIVES

- Design a hybrid capture system using CO₂ emissions from both bioprocessing and heat production at the RTE facility.
- Complete a pre-front-end engineering and design (FEED) analysis of the hybrid capture system, which includes environmental health and safety (EH&S), constructability report, identification of permits, and corporate approvals.
- Complete a techno-economic assessment (TEA) in accordance with DOE's methodology, as demonstrated by the bituminous baseline study.

RTE CCS PROJECT

➤ The first North Dakota Class VI permit approved October 19, 2021.

Critical Challenges. Practical Solutions.

PROJECT TECHNOLOGY

EERC. UND NORTH DAKOTA.

ETHANOL-CCS PROCESS WITH NOVEL <u>HYBRID</u> CAPTURE SYSTEM

EERC UND NORTH DAKOTA

Critical Challenges. Practical Solutions.

Critical Challenges. Practical Solutions.

PROJECT SCOPE

- 1. Project Management and Planning
- 2. Project Engineering and Design
- 3. Determine Pre-FEED Cost Estimate

>POP: Oct 1, 2020 – Sep 30, 2022

Milestone Title	Planned Completion Date
M1 – Design Basis Determined	End of Month 4
M2 – Complete Pre-FEED Analysis	End of Month 12
M3 – Complete Design	End of Month 12
M4 – Complete TEA	End of Month 15

		2020 2021											2022)										
Task	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1.0															м	4								
2.0				м	1							N	12											
3.0												N	13											

SUCCESS CRITERIA

 Completion of design basis for hybrid capture at RTE.

Photograph by Lars Plougmann

- ✓ Completion of TEA for design basis at RTE.
- ✓ Pre-FEED-level cost estimate for implementation of hybrid capture technology at RTE.
- ✓ Designed capture process that provides negative CO₂ emissions for RTE.
- RTE management approval of hybrid capture design such that it is considered by the RTE Board.

HYBRID-CCS SCENARIOS: Design Basis and Operational Estimates*

Scenario:	Maximum Amine Capture	Alternative Amine Capture
CO₂ Capture Design	<u>90%</u> of CO ₂ from boiler flue gas	<u>45%</u> of CO ₂ from boiler flue gas
Annual CO ₂ Rate	~130,000 tonnes (~310,000 tonnes total)	~65,000 tonnes (~245,000 tonnes total)
Equipment Differences	New boiler and flue gas blower; added compression and dehydration	Smaller amine unit
Power	3.3 MW	0.8 MW
Natural Gas	54 MMBtu/hr	27 MMBtu/hr

*In addition to bioprocessing–liquefaction system and existing ethanol-processing operations.

TASK 1.0 – PROJECT MANAGEMENT AND PLANNING

- Subtask 1.1 Project Management Plan (PMP)
- Subtask 1.2 Technology Maturation Plan (TMP)
- Subtask 1.3 TEA and Technology EH&S Risk Assessment
 - ✓ Hazardous Operations (HAZOP) Assessment

- Subtask 1.4 State Point Data Table
- Subtask 1.5 Life Cycle Assessment (LCA) Report
 - ✓ NETL openLCA modeling
 - ✓ Investigate renewable heat
 - * Corn stover gasification for steam generation
 - ✓ Compare to low-carbon fuel model
 - * GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation)

NETL LCA MODEL: PRELIMINARY RESULTS

Critical Challenges. Practical Solutions.

EERC | UND NORTH DAKOTA.

TASK 2.0 – PROJECT ENGINEERING AND DESIGN

- Subtask 2.1 Design Basis
- Subtask 2.2 Utility Requirements
- Subtask 2.3 Flow Diagrams
 - ✓ Existing diagrams updated
 - ✓ Major equipment list

Subtask 2.4 – Balance of Plant (BOP)

- ✓ Interconnection requirements
- ✓ Technology island configurations
- Subtask 2.5 Develop Permitting Strategy
- Subtask 2.6 Optimization Studies
 - ✓ Redundancy, materials of construction
 - ✓ Scoping/optimization

DESIGN BASIS SUMMARY

Component	Bioprocessing– Liquefaction	Flue Gas – Chemical Absorption	Hybrid Capture System
CO ₂ Capture Design	100% of CO ₂ from fermentation	90% of CO ₂ from boiler flue gas	>90% CO ₂ capture from emissions
Annual CO ₂ Rate	~180,000 tonnes	~130,000 tonnes	~310,000 tonnes
Major Equipment	Blower, compression, dehydration, refrigeration, distillation	Boiler, blower, amine system, compression, dehydration	[combined equipment]
Power	3.8 MW	3.0 MW	6.8 MW
Natural Gas	4.3 MMBtu/day	1300 MMBtu/day	1300 MMBtu/day
Water	82,000 gallons/day	420,000 gallons/day	500,000 gallons/day

HYBRID-CCS SCENARIOS INVESTIGATED

Capture Included per Scenario	Bioprocessing– Liquefaction	Flue Gas – Chemical Absorption	Hybrid Capture	
Max-Capture	100%	<u>90%</u>	>90%	
Alt-Capture*	100%	<u>45%</u>	~80%	

*Alternative design for an amine system within existing RTE boiler and liquefaction capacities.

TASK 3.0 – DETERMINE PRE-FEED COST ESTIMATE

Subtask 3.1 – Develop Capture Island Cost Estimate

- ✓ Determine pre-FEED-level costs
- Estimate postcombustion capture costs
- ✓ Integrate with compression and liquefaction subsystems

Subtask 3.2 – Develop BOP Cost Estimate

 ✓ Complete integration of the hybrid capture system with the remainder of the plant

Subtask 3.3 – Advanced Solvent Modeling Study

- ✓ Model advanced solvent technologies
- Investigate potential system sizing and cost improvements
- ✓ Compare previous estimates

HYBRID-CCS PRELIMINARY RESULTS: Cost Estimates*

ltem (2019\$)	Bioprocessing – Liquefaction	Flue Gas – Chemical Absorption	Hybrid Capture System	Alternative Amine Scenario	Alternative Hybrid Scenario
Capital Investment	\$32MM	\$59MM	\$91MM	\$25MM	\$57MM
Cost of CO ₂ Captured	\$35/tonne	\$96/tonne	\$55/tonne	\$80/tonne	\$45/tonne

*Additional Notes

- > Installed equipment cost estimates (i.e., do <u>not</u> include civil engineering).
- \succ Estimate accuracy is about ±30% based on DOE modeling and limited vendor quotes.

HYBRID-CCS <u>PRELIMINARY</u> RESULTS: Advanced Solvent Comparison

Parameter	Flue Gas – Chemical Absorption		Advanced Solvent	Advanced Hybrid	
Natural Gas	1300 MMBtu/day	1300 MMBtu/day	950 MMBtu/day	950 MMBtu/day	
Cost of CO ₂ Captured	\$96/tonne	\$55/tonne	\$93/tonne	\$54/tonne	

*Additional Notes

- > Only natural gas showed significant variation between solvents.
- Estimate accuracy is about ±30% based on DOE modeling and limited vendor quotes.

FUTURE HYBRID CCS PLANS

- Combined heat and power (CHP) investigations
 - Fossil and renewable
 - Renewable feedstock logistics
 - Implementation cost estimates
 - State Energy Research Center of North Dakota (SERC)
- FEED investigations
 - Refined advanced solvent modeling
 - Refined cost estimates
- LCA revisions

EERC. UND NORTH DAKOTA.

- Following FEED efforts
- Following in-depth CHP investigations
- Continued GREET comparisons

PROJECT SUMMARY: IED COMPLETED

Major Activities Conducted

• Pre-FEED

Ē

- Design basis
- Processing design
- Engineered plot plan
- HAZOP assessment
- TEA modeling
 - Advanced solvent modeling
- LCA modeling

EERC. UND NORTH DAKOTA.

- Renewable heat
- GREET comparisons

DOE Deliverables Submitted

≻PMP

≻TMP

>HAZOP report

- ➢ Pre-FEED report
- State point data table
- ≻TEA report
- ≻LCA report

QUESTIONS?

Red Trail Energy

Image Credit: Energy & Environmental Research Center

EERC. UN NORTH DAKOTA.

Jason D. Laumb Director of Advanced Energy Systems Initiatives

jlaumb@undeerc.org 701.777.5114 (phone) Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

PROJECT ORGANIZATION

EERC JL57967.AI

Critical Challenges. Practical Solutions.

PROJECT TIMELINE

			Budget	Period 1		
	2020		2021		2022	
Task	Q1	Q2 Q3		Q5 0 N D	Q6 Q7 J F M A M J	Q8 JAS
Task 1.0 – Project M anagement and Planning						
Subtask 1.1 – Project Management Plan	V D1					
Subtask 1.2 – Technology Maturation Plan		D2a			D2b M4	
Subtask 1.3 - Techno-Economic Analysis (TEA) and Technology EH&S Risk Assessment					D3	
Subtask 1.4 - State Point Data Table					D 4	
Subtask 1.5 – Life-Cycle Assessment (LCA) Report					D7a	₩D7b
Task 2.0 – Project Engineering and Design			V D5	MB		
Subtask 2.1 – Design Basis		M 1				
Subtask 2.2 - Utility Requirements						
Subtask 2.3 – Flow Diagrams						
Subtask 2.4 - Balance of Plant						
Subtask 2.5 - Develop Permitting Strategy						
Subtask 2.6 - Optimization Studies						
Task 3.0 – Determine Pre-FEED Cost Estimate				🌔 M2 🔻 I	06	
Subtask 3.1 - Develop Capture Island Cost Estimate						
Subtask 3.2 - Develop BOP Cost Estimate						
Subtask $3.3 - Advance d Solvent Modeling (ASM)$						V D8
Milestone (M)			V Delivera	hles (D)		

M ilestone (M)	🔻 Deliverables (D)	
M1 – Design basis determined.	D1 – Updated Project Management Plan	
M2 - Complete pre-FEED analysis.	D2a - Technology Maturation Plan (TMP)	
M3 - Complete design.	D2b - TMP Final	
M4 - Complete TEA.	D3 - TEA and Technology EH&S Risk Assessment	
	D4 - State Point Data Table	
	D5 – HAZOP Review	
	D6 – Pre-FEED Report	
	D7a – LCA Report	
	D7b – LCA Addendum	
	D8 - Advanced Solvent Modeling Addendum	

5222hm