

CCS in the U.S. Energy Ecosystem and Policy

Dr. Costa Samaras

Principal Assistant Director For Energy and Chief Advisor for Energy Policy
Office of Science and Technology Policy
Executive Office of the President

Carbon Management Project Review Meeting: August 15, 2022, Pittsburgh, PA

Carbon Capture and Storage (CCS) & Carbon Dioxide Removal (CDR) Are Essential for Net Zero by 2050

1970's

- CO₂-EOR
- CO₂ sourced from natural and industrial sources

1990's

Norwegian Sleipner Offshore CO₂ Capture and Storage Project

2000's

- IPCC Special Report on Carbon Capture and Storage
- Government research support for Carbon Capture and Storage

2010's

- Recognize "hard-to-abate" sectors of the economy need CCS
- Net zero is required to stabilize warming
- Carbon dioxide removal is needed
- Accelerating deployment of Carbon Capture, Storage, and Utilization

2020's

- Large scale demos
- Incentives drive deployment

Rapid and Large Emission Reductions are Needed to Limit Warming to Less Than 1.5 to 2 °C

Modelled pathways:

Trend from implemented policies

Limit warming to 2°C (>67%) or return warming to 1.5°C (>50%) after a high overshoot, NDCs until 2030

Limit warming to 2°C (>67%)

Limit warming to 1.5°C (>50%) with no or limited overshoot

Past GHG emissions and uncertainty for 2015 and 2019 (dot indicates the median)

IPCC, Working Group III, April 2022

Carbon Capture, Utilization, and Storage (CCS) & Carbon Dioxide Removal (CDR) are Necessary to Meet Emission Reduction Goals

IPCC, Working Group III, April 2022

The U.S. National Long Term Climate Strategy Maps Out Pathways to Net Zero By 2050

Sectoral Pathways to Net Zero 2050 Include CCS and CDR

Transportation

- H₂ from natural gas & CCS
- Biofuels with CCS

Buildings

H₂ from natural gas & CCS

Industry

- CCS for steel, cement, ammonia, and chemicals
- H₂ from natural gas & CCS

Electricity

- Natural gas or coal & CCS
- Biomass plus CCS
- H₂ from natural gas & CCS
- H₂ from biomass & CCS

Multiple Synergistic Actions Result in Cost Effective Net Zero Solutions

Electricity Sector

- Renewables
- Energy storage
- "Clean-firm power"
 - Nuclear fission
 - Natural gas or coal with CCS
 - Bio energy with CCS (BECCS) provides electricity and CDR
 - Renewable gas
 - $-H_2$

CCS/CDR provide 10-20% of Emission Reductions

REPRESENTATIVE PATHWAY TO 2050 NET-ZERO

ALTERNATE PATHWAYS TO 2050 NET-ZERO

Bottoms-Up Modeling Confirms the Important Role of CCS/CDR

https://netzeroamerica.princeton.edu/the-report

U.S. Energy System Requires Growing Deployment of CCS for a Wide Variety of Energy Applications

https://netzeroamerica.princeton.edu/img/Princeton%20NZA%20FINAL%20REPORT%20SUMMARY%20(29Oct2021).pdf

Large Amounts of Carbon Capture and Storage are Anticipated for All Scenarios

https://netzeroamerica.princeton.edu/img/Princeton%20NZA%20FINAL%20REPORT%20SUMMARY%20(29Oct2021).pdf

State-Level Technoeconomic Assessment of the Role CCS

https://sccs.stanford.edu/ccs-in-ca/full-report-form

With Current Policy Frameworks, Some Applications of CCUS Are Cost Competitive Today, More in the Future

MARGINAL ABATEMENT CURVE BY FACILITY

https://sccs.stanford.edu/ccs-in-ca/full-report-form

In short... it's time to get going

- Carbon capture and storage & carbon dioxide removal are needed for Net Zero 2050
- Expected to contribute between 10-20% of needed emission reductions
- Pathways to net zero are uncertain, but CCS plays an important role in all of them
- Contributes to emission reductions in every energy sector
- Cost reductions and technology maturation are needed to realize the full potential
- Addressing justice and equity concerns must be a central part of project planning and implementation
- Now's the time to begin scaling up

