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Task 3: Imaging Pressure and Stress

Radicalimprovement in imaging pressure and siress can be enabled with three key

technologies:

1. Rapid and autonomous geophysical monitoring

o e.g. processing monitoring datasets 100x faster with minimal human intervention

2. Real-time modeling and data assimilation tools

o e.g.real-time seismicinversionto monitoring pressure / saturation plume migration

3. Visuadlization and decision-support frameworks

o e.g.dynamic seismicityrisk forecasting
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Enabling Technology 1: Rapid Geophysical Monitoring
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ML-Enabled Geophysical Monitoring Toolkit
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Passive Seismic Imaging

POC: Chengping Chai

ML can provide better picks, locations, and tomography
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Figures: Comparisons of ML picking vs. standard catalog generation
methodsin terms of numbers of events detected and processing time.

15x as many events detect. 460x faster analysis.
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.... at orders of magnitude less cost.
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Passive Seismic Imaging

POC:Richard Alfaro-Diaz

Passive seismic data also offers new, unexploited data streams to constrain state-of-stress.
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Figure: Geo-spatial visualization of
seismic hazard in critically-stressed
regions of Oklaohomainferred from

dynamically triggered seismicity .
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data streams never used before in traditional reservoir
monitoring workflows




Active Seismic Imaging POC: JyofiBehura
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Seismic Image

Challenge:

4D seismic processingis fime-consuming and very expensive

Opportunity:
Use trained CNNs as a rapid seismic processor fo have

imagingresultsin hours, not months
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Active Seismic Imaging POC: JyofiBehura
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Enabling Technology 2: Real-Time Modeling & Data Assimilation
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Autonomous Inversion of Deformation Data POC: Jeff Burghardt

Challenge:
Workflows for determiningrock properties and

state-of-stress are often slow and clunky.

Proposed Approach:
Combine NNs, a physics-based finite element

model, and a gradient-based inversion

algorithm to rapidly estimate elastic properties

strain metersin injection

from sparse strain measurements.
and two monitoring wells
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Batelle POC: Jeff Burghardt

Challenge:
Workflows for determiningrock properties and

state-of-stress are often slow and clunky.

Proposed Approach:
Combine NNs, a physics-based finite element

model, and a gradient-based inversion

algorithm to rapidly estimate elastic properties

strain metersin injection

from sparse strain measurements.
and two monitoring wells
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Figure: Convergence of inversion modelto true estimate 11



Enabling Technology 3: Visualization & Decision Support

Integrated
System Model

Decision-SupportTools (see Demos!)




Phase | Accomplishments

Automated Monitoring & Characterization
o Study 1A: Seismic event detection and source properties with machine learning
e Study 1B: Artificial intelligence enhanced body and surface wave tomography
e Study I1C: Using ambient noise to estimate stress orientation
o Study ID: State of stress from triggered earthquakes
e Study I1E: Deep learning and anomaly detection applied to distributed acoustic sensing (DAS)
e Study IF: Pre-injection characterization by transfer learning to identify features below active
seismic resolution from induced events.
e Study 1G: Time-lapse quantitative monitoring of CO; plume using supervised deep learning

Real-Time Modeling & Data Assimilation
o Study 2A: Predictive analysis of pressure and temperature in carbonate reservoirs
o Study 2B: State of stress modeling from geophysical joint inversion
e Study 2C: Autonomous inversion of in situ deformation data for CO, storage decision support

Visualization & Decision Support
o Study 3A: Operational Forecasting of Induced Seismicity
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Phase Il Goals
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Questions?
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Thank youl

Joshua White, white230@linl.gov

Sherilyn Williams-Stroud, sherilyn@illinois.edu
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