

SMART-CS Initiative

<u>Science-informed</u> <u>Machine Learning to</u> <u>Accelerate</u> <u>Real</u> <u>Time</u> (SMART) Decisions in Subsurface Applications

Presentation to U.S. DOE Headquarters Phase I Accomplishments Session FWP Number: 1022462 Task 3: Imaging Pressure & Stress January 25, 2022

110011101100100111010000110

Radical improvement in imaging pressure and stress can be enabled with three key technologies:

- 1. Rapid and autonomous geophysical monitoring
 - o e.g. processing monitoring datasets 100x faster with minimal human intervention
- 2. Real-time modeling and data assimilation tools
 - o e.g. real-time seismic inversion to monitoring pressure / saturation plume migration
- 3. Visualization and decision-support frameworks
 - o e.g. dynamic seismicity risk forecasting

Enabling Technology 1: Rapid Geophysical Monitoring

U.S. DEPARTMENT OF ENERGY

Passive Seismic Imaging

ML can provide better picks, locations, and tomography at orders of magnitude less cost.

Figures: Comparisons of ML picking vs. standard catalog generation methods in terms of numbers of events detected and processing time.

15x as many events detect. 460x faster analysis.

Passive Seismic Imaging

Figure: Geo-spatial visualization of seismic hazard in critically-stressed regions of Oklahoma inferred from dynamically triggered seismicity.

Additional constraint on seismic hazard provided through data streams never used before in traditional reservoir monitoring workflows

Challenge:

4D seismic processing is time-consuming and very expensive

Opportunity:

Use trained CNNs as a rapid seismic processor to have

imaging results in hours, not months

Active Seismic Imaging

1.6

1.4

1.2

(Wba) 1.0

0.8 6d ΔP_P (

-0.6 ¹

0.4

0.2

0.5

0.4

ed ΔS_C

0.1

Methodology CNN trained using 400 shot-Perturbation in Year 0 - pressure Ο gathers from year 0 and year 1 2 seismic surveys Pore Year

Years 2 to 5 predicted Ο

Implication

Could use rapid NN for real-time Ο monitoring while awaiting more time-intensive processing

CO₂ Saturation Perturbation in 0 Year I Year 2

Enabling Technology 2: Real-Time Modeling & Data Assimilation

Challenge:

Workflows for determining rock properties and state-of-stress are often slow and clunky.

Proposed Approach:

Combine NNs, a physics-based finite element model, and a gradient-based inversion algorithm to rapidly estimate elastic properties from sparse strain measurements.

Challenge:

Workflows for determining rock properties and state-of-stress are often slow and clunky.

Proposed Approach:

Combine NNs, a physics-based finite element model, and a gradient-based inversion algorithm to rapidly estimate elastic properties from sparse strain measurements.

Implication

Rapid processing adds significant value to novel monitoring techniques:

- fiber optic strain sensing
- InSAR (onshore)
- ocean bottom pressure sensors (offshore)

Figure: Convergence of inversion model to true estimate

Enabling Technology 3: Visualization & Decision Support

Phase I Accomplishments

Automated Monitoring & Characterization

- Study 1A: Seismic event detection and source properties with machine learning
- Study 1B: Artificial intelligence enhanced body and surface wave tomography
- Study 1C: Using ambient noise to estimate stress orientation
- Study 1D: State of stress from triggered earthquakes
- *Study 1E:* Deep learning and anomaly detection applied to distributed acoustic sensing (DAS)
- *Study 1F:* Pre-injection characterization by transfer learning to identify features below active seismic resolution from induced events.
- Study 1G: Time-lapse quantitative monitoring of CO2 plume using supervised deep learning

Real-Time Modeling & Data Assimilation

- Study 2A: Predictive analysis of pressure and temperature in carbonate reservoirs
- Study 2B: State of stress modeling from geophysical joint inversion
- Study 2C: Autonomous inversion of in situ deformation data for CO₂ storage decision support

Visualization & Decision Support

• Study 3A: Operational Forecasting of Induced Seismicity

SMART Task 3: Pressure and Stress

Phase I Final Report

31-December-202

Phase II Goals

Questions?

Thank you!

Joshua White, <u>white230@llnl.gov</u>

Sherilyn Williams-Stroud, <u>sherilyn@illinois.edu</u>

