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Task 3: Imaging Pressure and Stress

Radical improvement in imaging pressure and stress can be enabled with three key 

technologies:

1. Rapid and autonomous geophysical monitoring

o e.g. processing monitoring datasets 100x faster with minimal human intervention 

2. Real-time modeling and data assimilation tools

o e.g. real-time seismic inversion to monitoring pressure / saturation plume migration

3. Visualization and decision-support frameworks

o e.g. dynamic seismicity risk forecasting



Enabling Technology 1: Rapid Geophysical Monitoring
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Passive Seismic Imaging
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POC: Chengping Chai

ML can provide better picks, locations, and tomography .... at orders of magnitude less cost.

1519 events over the same time period. Our catalog exhibits an expected power-law size distribution 
extending down to approximately magnitude one, leading to over 10-fold increase of seismic events due 
to the lower detection threshold in our method (Figure 1a). In our catalog, the region with the highest 
seismicity rate was located in the Jones area, just to the northeast of Oklahoma City.  

For moment tensor, we have benchmarked our neural networks using synthetic seismic waveforms. After 
training our MTNet, we use 200 random-valued moment tensors to verify the efficacy and accuracy of the 
model. We find that our MTNet produces accurate predictions for almost all of the 200 random moment 
tensors (Figure 1b). For MTNet-2, we perform similar benchmark tests, where we find that in the 3D case, 
the spatial location of microseismic events can be more uniquely and accurately determined compared 
with the predictions of moment tensor components. 
 
Implications: 

Compared with conventional seismic event detection and source property estimation methods, our neural 
network based methods are real-time and require minimal human interference. Our data-driven 
approaches can detect and estimate the source property of a seismic event based on the spatial-temporal 
characteristics of seismic waveforms, and therefore in general do not require accurate pick of event 
arrivals from seismic waveforms or delicate processing of the waveforms. The developed neural networks 
are therefore robust to field seismic noises, sparse data, and other unknown factors that can make 
conventional methods error-prone. The advantages of our machine-learning methods are important to 
geological carbon storage reservoir monitoring that requires accurate geophysical characterization to 
make real-time decisions. 

 

(a) 

 

(b) 

Figure 1: (a) Our machine learning based seismic detection algorithm detects an order of magnitude more events 
compared with traditional methods. (b) Our machine learning based moment tensor model produces accurate 
predictions (orange curves) in three moment tensor components (three rows) for 200 randomly generated synthetic 
moment tensors (blue curves).   

measurements, which suggests the deep learning measurements are more accurate than manual 
measurements. Our high-precision seismic event catalog allowed us to tightly constrain the fault plane 
geometry and investigate the temporal evolution of the fractures better than the original catalog.  

Our trained six ML models for surface-wave quality control use nearly 400,000 seismograms. Random 
forests and artificial neural networks outperformed logistic regression, k-nearest neighbors, and support 
vector machine. Random forests and artificial neural networks have the highest accuracy, require 
moderate computer storage, and have adequate processing speed. The performance of both the trained 
random forests and artificial neural networks models match human analysts for data they have never 
seen while also reducing the time invested in surface-wave quality control by 99.9% on a desktop 
computer (Figure B). We also show the quality labels from the artificial neural networks help reduce 
outliers in group velocity measurements, despite the training labels were not obtained for this purpose. 
The improved processing speed of these two models compared to human analysts and a demonstration 
of this method to independent surface-wave measurements show that this technique can be used to 
reduce the burden of quality control screening for large volumes of seismic data. For the Oklahoma 
region, we saved 15 workdays by processing 100,000 seismograms with our ML model, which required 
only 16 mins. 
 
Implications: 

Our passive seismic data processing workflow is ready to be applied to a carbon storage site. Our 
workflow can be used for both surface sensors (this study) and borehole monitoring arrays. We have 
demonstrated the workflow with transfer learning technique for borehole sensors. The workflow can be 
used before injection to investigate background seismicity and subsurface structure, and after injection 
for real time seismic monitoring. We envision daily use of an advanced passive seismic workflow, 
including the body-wave and the surface-wave data processing modules. Using continuous passive 
seismic data as input, our workflow produces real-time information about microseismic events. The 
microseismic event information can directly feed into stress estimation and modeling through seismicity 
rate match, fault identification, stress inversion of focal mechanisms, and seismic response to stress 
perturbation. The surface-wave data processing module can prepare inputs required for joint inversion 
algorithms, which produce 3D elastic property models efficiently and reliably. The elastic properties 
together with other data constraints can be incorporated for 3D stress modeling. AI models and physics-
based algorithms can be systematically integrated for near real-time monitoring. The data products from 
our workflow provide crucial information for the decision making of the carbon storage site. 

                

Figures: Comparisons of ML picking vs. standard catalog generation 

methods in terms of numbers of events detected and processing time.

15x as many events detect.  460x faster analysis.



 

 

is no relationship between seismicity and strain, we expect to see a straight line between 0,0 and 1,1 because 

the fraction of earthquakes that have occurred at or below a given strain level should be equivalent to the 

fraction of time spent at or below a given strain level.  If a point falls below the diagonal, then there is a 

deficit of earthquakes up to the corresponding strain compared to what is expected for the amount of time 

spent up the corresponding strain.  If the point falls above the diagonal, the opposite is true.   

To test if a small number of tidal cycles dominate the statistics of the full catalog, we determine the 

number of earthquakes and earthquake rate in each positive and negative cycle.  A positive cycle is a 

continuous period of time in which the tidal stress is greater than the median stress and a negative cycle is 

a continuous period of time in which the tidal stress is less than the median stress.  These periods have 

variable duration, but are frequently around 12 hours.  If seismicity appears to be correlated with the tidal 

cycle, but the statistics of the catalog are dominated by a few coincidently timed aftershock sequences we 

would see a high rate of seismicity during a few positively correlated cycles and otherwise little apparent 

difference between the rates of seismicity in positively and negatively correlated cycles.  If instead, there 

are not a few anomalously highly correlated cycles and, in general, the seismicity rates in the positively 

correlated cycles are consistently higher than the seismicity rates in the negatively correlated cycles, then 

we could conclude that the catalog statistics are not dominated by a few coincidently timed aftershock 

sequences.   

Output Products and Visualizations 

We will quantify observations of triggered earthquakes to inform and visualize the evolving state of stress, 

identify critically stressed faults, and inform seismic hazard assessments. We have constructed a 

visualization of regional seismic hazard in Oklahoma based on observations of triggering (Figure 1). 

 
Figure 1. Example seismic hazard and state of stress characterization in Oklahoma. (Left)Visualization of seismic hazards in 

Oklahoma derived from statewide observations of triggered seismicity. (Right) Identification of critically stressed faults 
associated with triggered earthquakes. 

Passive Seismic Imaging
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POC: Richard Alfaro-Diaz 

Passive seismic data also offers new, unexploited data streams to constrain state-of-stress.

Figure: Geo-spatial visualization of 

seismic hazard in critically-stressed 

regions of Oklahoma inferred from 

dynamically triggered seismicity .

Additional constraint on seismic hazard provided through 
data streams never used before in traditional reservoir 
monitoring workflows



Active Seismic Imaging
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Petrophysical Imaging using Deep Learning
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Petrophysical Imaging using Deep Learning
Jyot i Behura, CSM
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Seismic processing

Challenge: 

4D seismic processing is time-consuming and very expensive

Opportunity:

Use trained CNNs as a rapid seismic processor to have 

imaging results in hours, not months

POC: Jyoti Behura



Active Seismic Imaging
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Kimberlina Tests – Year 2
• Training done on t ime-lapse data from Year 0 and Year 1; Only 400 shot-gathers employed in t raining! Super-fast !

• Able to reasonably extract t ime-lapse pore-pressure and CO2 saturat ion for future monitor surveys

Ground Truth ML Result Di↵erence
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Note:
• No Year 2 data was

used in training

• Computat ionally

very efficient

• Can operate with

sparse data

POC: Jyoti Behura

Methodology

o CNN trained using 400 shot-

gathers from year 0 and year 1 

seismic surveys

o Years 2 to 5 predicted

Implication

o Could use rapid NN for real-time 

monitoring while awaiting more 

time-intensive processing



Enabling Technology 2: Real-Time Modeling & Data Assimilation
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Autonomous Inversion of Deformation Data
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POC: Jeff Burghardt

     

     

      

strain meters in injection 
and two monitoring wells

Challenge: 

Workflows for determining rock properties and 

state-of-stress are often slow and clunky.

Proposed Approach:

Combine NNs, a physics-based finite element 

model, and a gradient-based inversion 

algorithm to rapidly estimate elastic properties 

from sparse strain measurements.



Battelle
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POC: Jeff Burghardt

     

     

      

strain meters in injection 
and two monitoring wells

Challenge: 

Workflows for determining rock properties and 

state-of-stress are often slow and clunky.

Proposed Approach:

Combine NNs, a physics-based finite element 

model, and a gradient-based inversion 

algorithm to rapidly estimate elastic properties 

from sparse strain measurements.



11

model estimate

model parameter loss function 

gradient

true value

shallow

aquifer

cap

rock

reservoir

basement

Implication

Rapid processing adds significant value to 

novel monitoring techniques:

• fiber optic strain sensing

• InSAR (onshore)

• ocean bottom pressure sensors (offshore)

Figure: Convergence of inversion model to true estimate



Enabling Technology 3: Visualization & Decision Support
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Decision-Support Tools  (see Demos!)



Phase I Accomplishments
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Phase II Goals
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Questions?
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Thank you!

Joshua White, white230@llnl.gov

Sherilyn Williams-Stroud, sherilyn@illinois.edu
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