Pathways to CO₂ Utilization and Storage for the Intermountain West Region

Derek Vikara

Support Contractor for the National Energy Technology Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

I-WEST Overview: the Road to Carbon **Neutrality in the Intermountain West**

I-WEST Objectives

Develop regional, stakeholder-informed technology "roadmap" for a sustainable and equitable transition to carbon neutral

- •Regionally relevant technology pathways
- •Options for deployment now & within next decade
- •Explicit consideration of equity, impact, & workforce

Facilitate regional coalitions to implement & deploy roadmap

Enabling Mechanisms for CCUS

CCUS Pathway Assessment Objectives

Evaluate opportunity for <u>CCUS</u> to deploy at significant scale in I-WEST region

- 1. ID regionally relevant opportunities & roadblocks given regionally relevant attributes
- 2. Mitigate perceived technical/business risk with critical insight to promote widespread adoption
- 3. Emphasize how projects are blending tech & policy support to create positive regional economic benefits
- 4. Outline next steps to facilitate further deployment
 - Consider synergies of existing power & industrial economies
 - Identify research gaps & needs
 - Support alignment of CCUS with new & emerging economies related to hydrogen, bioenergy, & direct air capture (DAC)

Multiple configurations exist across the CCUS value chain

4

CO₂ Emissions & Reduction Pathways

Source: EPA Flight Data

Process for Gaining "Place-Based" Insight

Workshops: Discussions with regional stakeholders

- State/tribal-level outreach workshops
- Technical roundtable
- Socio-economic & policy roundtable

Summary available: https://iwest.org/events/

Regional deployment outlook & economic assessment with mature CCUS analysis tools

 NETL: CO₂ storage, transport, & CO₂-EOR economic models

LANL: SimCCS model

٠

Group discussions with multi-state stakeholder team to formulate vision for assessing CCUS opportunity

- SWOT analysis
- Gap assessment

CCUS in the I-WEST: SWOT

Strengths

Weaknesses

- CCUS is a high TRL technology
- Ample regional geologic storage potential
- CO₂ pipeline networks exist & are expanding
- Favorable policy progress & more in works

- Slow UIC Class VI permitting process, particularly for states/tribes w/o primacy
- Expensive tech requiring large investment
- Uncertainty in CCUS policy landscape

Opportunities

Threats

- Evolving policy broadens opportunity (BIL, IRA - 45Q expansion, LCFS, Class VI primacy)
- Early-mover business cases exist (CO₂-EOR, acid gas injection)
- Produce/treat brine to augment water supply

- Lack of public & social acceptance
- Acceleration of fossil-plant shuttering
- No expansion of 45Q or eligibility window
- Federal or state-based leasing restrictions
- Pressure issues if ops not well managed

Assessing Implications of CCUS Deployment in the I-WEST

- Does sufficient, low-cost storage capacity exist within region to deploy CCUS at scale?
- What percent of existing I-WEST point CO2 emissions could regional geology accommodate?
- Does reserve storage capacity exist should CO₂ volume requiring storage increase over time?
- What <u>magnitude of projects</u> (& where are favorable geologic targets) need deployed based on CO₂ volume to be managed?
- Size of pipeline network required to connect capture point sources with viable geologic storage?
- Workforce implications given emerging regional CO₂ economy where CCUS plays central role?

CCUS Analytical Tools

Analytical framework applied leverages mature analysis tools with relevant geologic data

Analytical Domain	CCUS Tool
Saline storage capacity & cost evaluation	FECM/NETL CO ₂ Saline Storage Cost Model ¹
CO ₂ -EOR capacity & cost evaluation	FECM/NETL Onshore CO ₂ -EOR Evaluation System ^{2,3}
CO ₂ source to sink pipeline networking	SimCCS ⁴

- 1 https://netl.doe.gov/energy-analysis/search?search=CO2SalineCostModeJ
- 2 https://netl.doe.gov/energy-analysis/search?search=CO2ProphetModeI
- 3 https://netl.doe.gov/energy-analysis/search?search=OnshoreCO2EORCostModel
- 4 https://simccs.org/ and https://github.com/SimCCS/SimCCS

Perspective on CO₂ Storage in Saline-bearing Formations

- Cost implications & capacity evaluated under four distinct modeling scenarios
- Each scenario reflects a <u>favorable</u> incremental change to storage-related technical, policy, or operational condition from baseline scenario
- Notable factors adjusted (Morgan et al., 2022):
 - PISC duration
 - Financial responsibility
 instrument
 - Number of sites evaluated
 - Permitting timeframe

Results using NETL/FECM CO₂ Saline Storage Cost Model w/imposed capacity constraints as proposed by Teletzke et al., 2018. Three "policy development" cases run to evaluate effects on costs.

Teletzke, G., Palmer, J., Drueppel, E., Sullivan, M., Hood, K., Dasari, G., and Shipman, G. 2018. Evaluation of Practicable Subsurface CO₂ Storage Capacity and Potential CO₂ Transportation Networks, Onshore North America. 14th International Conference on Greenhouse Gas Control Technologies. Melbourne, Australia

Morgan, D., Guinan, A., Warner, T., Vikara, D. and Vactor, R.T. 2022. Intermountain West Energy Sustainability & Transitions Initiative: NETL/FECM Model and Analysis Approach Overview. National Energy Technology Laboratory. Pittsburgh, PA. (pending release)

CO₂ Pipeline Buildout – Single Phase

CO2 sector Ag/food manufacturing Ammonia/fertilizer Cement/concrete Chemical manufacturing Electricity (Coal) Electricity (Gas) Electricity (Other) Ammonia/fertilizer Cement/concrete Chemical manufacturing Electricity (Coal) Manufacturing Manufactu	Economic Results	Scenario 1	Scenario 2	Scenario 3		
	 Petroleum refineries her) Pulp/paperboard/saw mills Solid waste 	Assumed CO_2 capture (Million tonnes/year)	year) 219.5			
= Existing CO ₂ point source	= Potential CO ₂ pipeline Saline receptoir contraid	Resulting new pipeline installed (Miles)	4,882	5,433	6,836	
 Same reservoir centroid Disadvantaged community or tribal lands 		Percent of national CO ₂ pipeline network (2021)	91%	102%	128%	1

Calls to Action Accelerating CCUS Deployment in I-WEST

Technical & Cost

- Pre-investment in CO₂ transport & storage capacity as strategic infrastructure
- Improve certainty of storage capacity with containment to ID "shovel-ready sites" for rapid project deployment
- Reduce seismic survey costs to improve economics for characterization & monitoring
- Scoping multiple prospective storage sites for projects
- Elevation of all CCUS tech up TRL scale via R&D, investment, & earlymover projects

Policy

- Financial / tax incentives & policies to drive private investment
- State-level polices for pore space ownership & ownership transfer; applicable to produced brine
- Rules for CO₂ ownership & long-term liability
- State Primacy for UIC Class VI wells
- Sufficient staffing & resources to evaluate permit applications & perform project oversight
- Supportive policies for CO₂ transport & storage on federal & state lands
- Market development via state/federal procurement programs, portfolio requirements, & mandatory power purchase or offtake agreements

Outreach / Societal

- Well-planned, early engagement with stakeholders & community to educate, as well as understand & address concerns
- Outreach for all social levels; provide insight to benefits & risks of low-carbon solutions
- ID, develop, & promote "earlywin" projects to show CCUS feasibility, economic & environmental benefits
- Overcome perceived human capital deficit required to plan, permit, & oversee projects

Summary & Conclusions

I-WEST well equipped to pioneer region-wide lowcarbon/energy transition with CCUS playing major role

- Ample storage capacity to abate bulk of existing & expanding point source fleet
- Uncertainty remains on Class VI rules implementation
 - Reductions in PISC, monitoring rigor, & financial assurance may improve cost
 - o Clarity needed in pore space ownership & liability transfer to reduce business risk
- Existing pipeline network needs supplemented for large-scale deployment

Summary & Conclusions

CCUS pathway(s) I-WEST analysis also includes:

- CCUS overview, business case configurations, & technology benefits & challenges
- CO₂-EOR assessment
- Workforce implications
- CCUS assessment in proximal regions to I-WEST
- State-level geologic resource deep dives

CCUS is only one aspect of the larger I-WEST effort that more broadly discusses pathway impacts:

- Environmental/social justice
- Workforce & revenue
- Stakeholder-specific priorities & perspectives

Project Contributors

Contributing team includes members from participating national labs & four regional universities

Brian McPherson Robert Simmons No'am Dvory Carlos Vega-Ortiz Lei Xu

Robert Balch Jean-Lucien Fonquergne Martha Cather

David Morgan Luciane Cunha Timothy Grant Jeffrey Eppink Scott Matthews Travis Warner Allison Guinan Taylor Vactor Derek Vikara Michael Marguis

Fred McLaughlin Zunsheng Jiao Charles Nye Matthew Johnson Nick Jones Selena Gerace

Manika Prasad Kirt Livo Daisy Ning Stephen Sonnenberg Ali Tura

Bailian Chen Martin Ma Ahmmed Bulbul Rajesh Pawar

Disclaimer

These studies were funded by the U.S. Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of its employees, nor the support contractor, nor any of their employees, makes any warranty, expressor implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

All images in this presentation were created by NETL, unless otherwise noted.

Thank you!

Contact: derek.vikara@netl.doe.gov

Appendix

• These slides will not be discussed during the presentation but are mandatory.

Favorable Geologic Resources Exist Across the Region

- Region has numerous geologic basins that hold a significant carbon storage resource endowment
- Sinks are co-located with or proximal to a large portion of the CO₂ point source fleet
- Capacity estimated between **354 to 3,365 gigatons**; can store regional point source emissions from **1,600 to over 15,000 years**

Snapshot on Regional Policy Headway

- State-level target to reach economywide GHG neutrality between 2045-2050
- Liability transfer for storage sites operators to the state 30 years after CO_2 injection ends
- Property tax incentives for facilities installing CCS equipment
- Established pore space ownership with respect to the surface estate
- Pore space owner safeguards from injection liability
- Long-term liability transfer to state 10 years after CO_2 injection ends
- Potential to seek jurisdiction for UIC Class VI injection well primacy
- Seeking primacy on all UIC well classes

Additional source material

- <u>https://www.c2es.org/content/state-climate-policy/</u>
- https://www.c2es.org/document/energy-financial-incentives-for-ccs/

CCUS is Ramping Up in the Region

For project-level info: https://iwest.org/current-regional-initiatives/

Top Five Lowest Cost Storage Reservoirs by State

State	CO2_S_COM Reservoir Name	Basin	1 br C (201	lst-year eakeven O ₂ price 18\$/tonne)	Max Number Injection Projects	CO ₂ Storage Capacity (Million tonnes)	Depth to top of formation (ft)	Thickness (ft)	Porosity	Horizontal permeability (mD)	Area (mi²)
	Seven Rivers2	Permian		9	16	2,064	3,064	516	19.0%	22	9,342
NM	Morrison2	San Juan		9	13	1,677	5,511	883	13.0%	15	8,518
	Wolfcamp2	Tucumcari		10	36	4,644	3,663	1,000	12.5%	100	8,495
	Leonard2	Permian		11	12	1,548	5,808	1,000	9.0%	10	9,342
	Canyon2	Tucumcari		11	14	1,806	5,517	724	8.5%	42	8,495
WY	Frontier3	Big Horn		7	23	2,967	3,280	740	22.1%	73	4,073
	Lance1	Wind River		11	8	1,032	7,394	1,000	17.5%	16	3,927
	Tensleep4	Wyoming Thrust Belt		11	56	7,224	6,375	440	22.0%	150	6,903
	Fort Union2	Wind River		14	6	774	5,966	1,000	8.4%	8	6,324
	Entrada6	Denver		15	5	645	7,163	382	15.7%	31	5,031
	Morrison1	San Juan		10	2	258	5,390	846	13.0%	15	1,960
	Morrison8	Piceance		15	17	2,193	6,382	435	14.0%	30	17,368
CO	Arbuckle2	Las Animas Arch		17	15	1,935	5,890	260	14.0%	60	11,610
	Entrada8	San Juan		17	7	903	3,391	161	20.0%	370	1,707
	Hermosa1b	Paradox		18	1	129	8,275	1,000	7.5%	9	1,467
	Minnelusa2	Powder River		16	22	2,838	8,000	295	19.0%	200	3,611
	Madison Gp-Mission Canyon Fm4	Williston		16	40	5,160	6,500	545	12.0%	8	42,151
MT	InyanKara1	Williston		17	62	7,998	5,000	250	18.0%	100	27,105
	Red River2	Williston		17	25	3,225	9,500	360	14.0%	35	21,306
	Duperow-Lower1	Kevin Dome		24	2	258	3,800	300	12.5%	20	4,804
	Entrada2	Uinta		11	64	8,256	7,240	670	16.5%	100	10,798
UT	Tensleep5	Wyoming Thrust Belt		11	33	4,257	6,780	420	22.0%	145	4,435
	Morrison7	Uinta		12	12	1,548	6,858	804	13.0%	21	8,004
	Navajo01	San Rafael Swell		12	2	258	6,500	420	23.5%	15	1,830
	Dakota5	Uinta		54	2	258	8,640	130	12.0%	20	10,678

Saline Storage Assessment Applicable to I-WEST Region and Proximal States

CO₂-EOR Assessment Applicable to I-WEST Region and Proximal States

CO₂ Transportation Network Outlook: Integrating Sources and Sinks

SimCCS Overview

- · LANL's SimCCS utilized to simulate pipeline buildouts
- Optimizes networks based on total system unit costs (capture, transport, and storage)
- Connecting pipelines are sized to handle the total volume of CO₂ captured from all point sources part of a CCUS network

Assumed unit costs for CO_2 capture by source type (*NICO₂LE*)

- SimCCS implemented to target full decarbonization from all 45Q eligible point sources in the current I-WEST fleet using CCUS
- Annual CO₂ emission volume = 219.5 million tonnes per year

Unit costs of storage and CO_2 -EOR by field / reservoir

"Phased" Deployment Buildout

- Full CCUS 45Q point source decarbonization over a 20-year development scale-up timeframe assumed
- CO₂ volumes managed closely coincide with I-WEST Roadmap's phased decarbonization timeline
- Early (Phase 1 and 2): CO₂ largely sent to a mix of "same state" EOR fields and saline storage
- Late (Phases 3 and 4): connection of sources far from reservoirs with EOR options (AZ and NM sources)

	Buildout Phase						
Result Output	Phase 1	Phase 2	Phase 3	Phase 4			
Captured amount of CO ₂ (Million tonnes/year)	50	100	150	219.5			
New pipeline installed (Miles)	3,447	4,010	5,278	6,601			
Weighted average unit capture cost (\$/tonne CO ₂)	\$28.37	\$37.17	\$40.11	\$46.87			