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Motivation

Can we rapidly develop experience among CCS stakeholders to facilitate rapid & safe deployment
of large-scale geologic CO, storage?

Vision: Enable a Virtual Learning
Environment (VLE) for exploring
and testing strategies o
optimize reservoir development,
management & monitoring prior
to field activities

Goal: Demonstrate
the proof-of-concept with
a prototype
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Virtual Learning Environment (on 53aee3de2578)

- = Interactively gain
R infuitive understanding

of CO, storagesite
behavior by:

Permeability Realization: |k3r5-h.out ~ |
ML Method: TSPM ~
Injection rate: 1 [} 91

Timestep: 0 « 68 1
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Interactive Virtual Learning Plaiforms Need Accurate, Fast Predictive Models
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Our Overall Approach

cand

Generate Training Data Develop ML-Based Models VL Platform
Reservoir Database of Forecasting —
Simulators Simulation Runs ML Models ——

CarbonSAFE ML Models

CarbonSAFE >I( D ( D ( 0
Run VTF?E‘ f‘ __,| sACROC ML Models
SACROC < : Qlidare
Simulations Models ( O ( O ( O

Gulf of Mexico ML Models
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Part 1 — Generate Training Data

Generate Training Data

Reservoir Database of
Simuldtors Simulation Rur

CarbonSAFE

L Run
SACROC Simulations

Gulf of Mexico
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Task 5: Active Carbon Storage Management

Overview of Field Sites
Criteria for reservoir model selection

1. Capabillity to store up to 50 million tons of CO,
over 50 years (injection + post injection
periods)

2. Variety of geological depositional settings

3. Public availability and accessibility of multiple
geological realizations to capture uncertainty

4. Preference to models created in previous DOE
funded projects

Selected Reservoir Models

@ Highlsland 24L (offshore Gulf of Mexico)
Fluvial depositional environment

@ CarbonSAFEUtah
Eolian depositional environment

€ SACROC
Carbonate Reef depositional environment
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Task 5: Active Carbon Storage Management

Simulation Runs at Field Sites

PRESSURE MAP

Numerical reservoir simulation of active
reservoirmanagement:

e 30 years of injection/extraction and up to 50
years of post-injection CS performance

e Fixed number of injection/extraction wells

PVT FLUID
_PROPERTIES

/RESERVOIR SIMULATION
MODEL

L

. « Multiple Depositional Environments v Vv Al
Geological { / Reservoir Sites NETF S T TARGET
uncertainty | . peterogeneous SO0 e,

OUTPUTS (ML)

WELL
CONSTRAINTS

porosity/permeability

. (up to 50 million tons) SATURATION MAP
uncertainty Variable injection allocation

among injectors

Operational { Variable cumulative CO, injection

EXTERNAL
BOUNDARY
CONDITIONS

=

Use of high-fidelity reservoir simulators
provides the needed science-basis
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SACROC Field Site

Accounting for Geological Uncertainty
3 porosity-permeability realizations: P10, P50, P20
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SACROC Field Site

Sample Results
3 porosity-permeability realizations: P10, P50, P90
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Part 2 — Develop ML-Based Models

Develop ML-Based Models

Forecasting
1S ML Models

CarbonSAFE ML Models
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VTF?E‘ f‘ SACROC ML Models
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Gulf of Mexico ML Models
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Model Development on Toy Reservoirs

* Initial work focused on building models for two
toy reservoirs

o One 2D reservoir with homogeneous
permeability and porosity

o One 3D reservoirwith heterogeneity
for added complexity

 This provided early cases for modelers to work
with while the simulation teams generated runs
on the field-scale reservoirs

« Coming out of this effort, scripts had been
written for fraining models on simulation output
files and many implementation details had
been worked out
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Development on Field Scale Reservoirs

« Simulation cases for each reservoirwere used 1o train
rapid forecasting models, adapting toy model scripts
as needed to handle the new size and complexity

 Additionalcases were used to evaluate the models

Forecasting
Models

ases

81 Training < 9 Test

Gulf of 108 12 Test
vexico IR ——————
Cases

Train Evaluate

0On

VVVY

y

Cases

VVVV|VV
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Model Inputs
Por/Perm Realization
 P10/P50/P90 (categorical)
e 3D Porosity (i, j, k)

* 3D Permeability (i, j, k)
Well Locations

* Injection Wells (i, j)

* Production Wells (i, j)
Injection Rates

e Per Injection Well (time)
e Cum. CO, Injected (time)

Model Outputs
4D Pressure (i, j, k, time)
4D Saturation (i, j, k, time)
Production Rates
e Per Production Well (time)




Development on Field Scale Reservoirs

« A fotal of 15 models were built across the three reservoirs
« Accuracy and forecast fime were measured and converted o common units

Reservoir
CarbonSAFE SACROC Gulf of Mexico
Multi-layer Perceptron (MLP) uu NETL PSU
Convolutional Neural Network (CNN) UTBEG
CNN Autoencoder LBNL
Long Short Term Memory (LSTM) NETL NETL (x2) PSU
NT‘;,’::' CNN / LSTM SNL SNL
U-Net UTBEG
Fourier Neuron Operator (FNO) LANL
Generative Adversarial Network (GAN) PNNL
Graph Neural Network (GNN) Battelle
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Development on Field Scale Reservoirs

Pressure Truth, Prediction, and Error at
Start of Injection, Middle Injection,

and End of Injection

Pressure (kPa), Realization number =

True Prediction
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Saturation Truth, Prediction, and Error
at Start of Injection, Middle Injection,
and End of Injection

Saturation , Realization number = 82, Time (months) = 0, Layer number = 0
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Development on Field Scale Reservoirs

| BestRMSEAchieved = | ~Speed-up

* Most models are Reservoir Model Pressure Provglz’zlron Forecast rill?;gilsst?
accurate and show Model Reported (psi) Rate Time (secs) based
Vi | bbl/da simulator

golc')ede mseurﬂ_ Wl Th NETL LSTM 26.70 0.0064 36.86 1.15 5000X

.g | T. CARBON R MLP 20.50 0.0350 20.8 800 10X

simulanonruns SAFE QLI CNN AENC 36.17 0.0105 N/A 131 50X

o Egch reser\/oir hCId at SNL CNN/LSTM 2.655 0.0006 3.59 93 60X

|eOS-|- one mOdel WlTh LANL FNO 4.94 0.0296 99.5 9.54 250X

low forecast times NETLssaE ijzg ggijg — ;‘; :gz ;gggi

1(':“ me 11:O gefnerOT.G Olll 1Y:\e{{eJe8 NETL-GES LSTM 22.4 0.0280 121.83 0.48 5000X

Ime steps 1or a singie PNNL GAN 1214 00295  221.59 0.98  2500X

run configuration) SNL CNN/LSTM 11.17  0.0358  245.24 2.17 400X

° Predicﬂons can be UTBEG U-NET 16.30 0.0029 45 6.9 400X

mCIde Up 1.0 5000X UTBEG CNN/MLP 2.06 0.0053 13.86 5 2000X

. . (elt] X2 Battelle GNN (multi) 296.62 0.0444 N/A 204 50X

]:%S;eé;hﬁg SIMUICTIONS e -, MLP 0.16  0.0068 6.5 165 60X

LSTM 0.12 0.0429 9.09 190 50X
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Part 3 — VL Platform Prototype

VL Plafform




Development of VLE Prototype

Virtual Learning Environmen t (on 1d46d9d356f0)

File

User Inputs

® Bund |eS dis pngTe M I_ Gealogic Environment: | Toy_Problem | y @ X ZE@® 8 & &

Permeability Realization: | P10 ~ |

models into a single, e

Injection Distribution:

deployable package

 Inferactive with ability o
vary different inputs and
explore outfputs in |
different formats ol

« Windowed GUI system
as well as web-browser
based

Cumulative CO2 injected [MMT]

w
2
v
o

Injected [MT]
& o

Pressure Saturation

Saturartion [%]
e
W L
o I+ i
) t t }
"
1
N
-1
Q N
]
w L
&

U.S. DEPARTMENT OF




File

User Inputs
Geologic Environment: | Clastic_Shelf = > TR EZEZ@ 8 & L2
Permeability Realization: P10 + ' Cumulative CO2 injected [MMT]
ML Method: | TSPM 3d Reservoir Permeability
Injection Rate, kg/s: 1 5|1 W Cel
Timestep: 0 = 68 |2 77.1 %,
64.3 Eq__
514 =
@
38.6 224
257
i55 ° 0 1{0 zlo 3=o 4}0
.o_m Timesteps
Predicted Outputs
o XN EZEZ0 B 4L & » I NNTMEZEZS & <Rl ™=
Prossure fkPa) 3d Reservoir Pressure Distribution o 3d Reservoir Saturation Distribution
3.53e+03 —0.'57
2.95e+03 0714 ’
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589. 0.143
i 0.00 i 0.00

Time-varying quantities at probed reservoir location
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Phase I: Summary

- We have generated a large volume of synthetic data for CO,
Injection scenarios from three representative reservoirs, and have
useg ’rlhem to build 15 machine learning-based forecasting
models

» The ML-based models captured the physics of fluid flow during CO, storage
operations while approximating simulation outputs at 50 to 5000 ’rlmes faster
than the originalruns

« We have built a prototype virtual learning environment with the
ML-based models to demonsirate how a stakeholder can
develop an intuitive understanding of CO, storage site behavior
by interacting with them

 All results are publicly available, contact SMARTFE@netl.doe.gov
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Phase I: Lessons Learned

* Reservoir Modeling and Simulation

> Itisimportant fo ensure that the reservoirmodels (and syntheftic fraining data) accurately
capture the underlying physics— engagement of SMEsis vital

 Machine Learning Model Development

> Simplerand established models (e.g., CNN, MLP, LSTM) appearto balance speed and
accuracy well, while complex methods are more accurate but significantly slower

» Datareduction/dimensionality reduction methods are promising, but have the overhead
to tfransform data back to original scale which may affect the gainsin prediction time
from a smallerdatasize

» Resultsshow that arelatively small number of simulation runs (dozens) may be sufficient to
develop accurate ML-based forecasting models

> Inclusion of physics-based constraintsimproves ML prediction accuracy and training fime.
But, simultaneous training of pressure and saturation can be challenging due to
unbalanced data structure and different underlying spatio-temporal features. More
complex (orhierarchical) spatio-temporal ML models need to be explored to evaluate
applicability of these models

> Models frainedseparately for pressure and saturation can be more accurate compared
to those frained simultaneously
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Questions?
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