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Goal: Demonstrate 
the proof-of-concept with 
a prototype 

Motivation
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Vision: Enable a Virtual Learning 

Environment (VLE) for exploring 

and testing strategies to 

optimize reservoir development, 

management & monitoring prior 

to field activities

Can we rapidly develop experience among CCS stakeholders to facilitate rapid & safe deployment 
of large-scale geologic CO2 storage?

Interactively gain 
intuitive understanding 
of  CO2 storage site 
behavior by: 

3d Reservoir Permeability

Manipulating 
Inputs

Exploring 
Outputs



Fast 
Predictive 

Model

Fast 
Predictive 

Model

Fast 
Predictive 

Model

4

Fast predictive models can be developed using novel machine-learning based methods 

Interactive Virtual Learning Platforms Need Accurate, Fast Predictive Models 



Our Overall Approach
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Part 1 – Generate Training Data



Task 5: Active Carbon Storage Management
Overview of Field Sites
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Criteria for reservoir model selection

1. Capability to store up to 50 million tons of CO2

over 50 years (injection + post injection 

periods)

2. Variety of geological depositional settings 

3. Public availability and accessibility of multiple 

geological realizations to capture uncertainty

4. Preference to models created in previous  DOE 

funded projects 2

3

1

Selected Reservoir Models

❶ High Island 24L (offshore Gulf of Mexico)
Fluvial depositional environment

❷ CarbonSAFE Utah
Eolian depositional environment 

❸ SACROC
Carbonate Reef depositional environment



Task 5: Active Carbon Storage Management
Simulation Runs at Field Sites
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Numerical reservoir simulation of active 

reservoir management:

• 30 years of injection/extraction and up to 50 
years of post-injection CS performance

• Fixed number of injection/extraction wells

• Multiple Depositional Environments 

/ Reservoir Sites

• Heterogeneous 

porosity/permeability

• Variable cumulative CO2 injection 

(up to 50 million tons)

• Variable injection allocation 

among injectors

Geological 
uncertainty

Operational 
uncertainty

Use of high-fidelity reservoir simulators 

provides the needed science-basis
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3 porosity-permeability realizations: P10, P50, P90

Porosity

Permeability

P10 P50 P90

SACROC Field Site
Accounting for Geological Uncertainty
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Pressure

Saturation

P10 P50 P90

3 porosity-permeability realizations: P10, P50, P90
Sample Results

SACROC Field Site
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Part 2 – Develop ML-Based Models



Model Development on Toy Reservoirs

• Initial work focused on building models for two 
toy reservoirs
◦ One 2D reservoir with homogeneous 

permeability and porosity

◦ One 3D reservoir with heterogeneity 
for added complexity

• This provided early cases for modelers to work 
with while the simulation teams generated runs 
on the field-scale reservoirs

• Coming out of this effort, scripts had been 
written for training models on simulation output 
files and many implementation details had 
been worked out
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• Simulation cases for each reservoir were used to train 
rapid forecasting models, adapting toy model scripts 
as needed to handle the new size and complexity

• Additional cases were used to evaluate the models

Development on Field Scale Reservoirs
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Train Evaluate
Forecasting 

Models

36 Training 
Cases

4 Test 
Cases

CarbonSAFE

108 
Training 
Cases

12 Test 
Cases

Gulf of 
Mexico

81 Training 
Cases

9 Test 
CasesSACROC

Model Inputs
Por/Perm Realization
• P10/P50/P90 (categorical)
• 3D Porosity (i, j, k)
• 3D Permeability (i, j, k)
Well Locations
• Injection Wells (i, j)
• Production Wells (i, j)
Injection Rates
• Per Injection Well (time)
• Cum. CO2 Injected (time)

Model Outputs
4D Pressure (i, j, k, time)
4D Saturation (i, j, k, time)
Production Rates
• Per Production Well (time)



• A total of 15 models were built across the three reservoirs

• Accuracy and forecast time were measured and converted to common units

Development on Field Scale Reservoirs
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Reservoir

CarbonSAFE SACROC Gulf of Mexico

Multi-layer Perceptron (MLP) UU NETL PSU

Convolutional Neural Network (CNN) UTBEG

CNN Autoencoder LBNL

Model 

Type

Long Short Term Memory (LSTM) NETL NETL (x2) PSU

CNN / LSTM SNL SNL

U-Net UTBEG

Fourier Neuron Operator (FNO) LANL

Generative Adversarial Network (GAN) PNNL

Graph Neural Network (GNN) Battelle



Development on Field Scale Reservoirs
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Pressure Truth, Prediction, and Error at 
Start of Injection, Middle Injection, 
and End of Injection

Saturation Truth, Prediction, and Error 
at Start of Injection, Middle Injection, 
and End of Injection

Pressure RMSE Over 
Time, by Test Case

Pressure RMSE Across 
Layers, by Test Case

Production RMSE for Well P3 
Over Time, by Test Case



Development on Field Scale Reservoirs
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• Most models are 
accurate and show 
good visual 
agreement with 
simulation runs

• Each reservoir had at 
least one model with 
low forecast times 
(time to generate all 
time steps for a single 
run configuration)

• Predictions can be 
made up to 5000x 
faster than simulations 
can be run

Reservoir 

Model
Institution

Model 

Reported

Best RMSE Achieved

Forecast 

Time (secs)

~Speed-up 

relative to 

physics-

based 

simulator

Pressure 

(psi)
Saturation

Water 

Production 

Rate 

(bbl/day)

CARBON
SAFE

NETL LSTM 26.70 0.0064 36.86 1.15 5000X

UU MLP 20.50 0.0350 20.8 800 10X

LBNL CNN AENC 36.17 0.0105 N/A 131 50X

SNL CNN/LSTM 2.655 0.0006 3.59 93 60X

SACROC

LANL FNO 4.94 0.0296 99.5 9.54 250X

NETL-SSAE
MLP 22.77 0.0350 90 1.59 1500X

LSTM 34.50 0.0390 52.39 1.24 2000X

NETL-GES LSTM 22.4 0.0280 121.83 0.48 5000X

PNNL GAN 12.14 0.0295 221.59 0.98 2500X

SNL CNN/LSTM 11.17 0.0358 245.24 2.17 400X

UTBEG U-NET 16.30 0.0029 45 6.9 400X

Gulf of 
Mexico

UTBEG CNN/MLP 2.06 0.0053 13.86 5 2000X

Battelle GNN (multi) 296.62 0.0444 N/A 204 50X

PSU
MLP 0.16 0.0068 6.5 165 60X

LSTM 0.12 0.0429 9.09 190 50X
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Part 3 – VL Platform Prototype



Development of VLE Prototype
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• Bundles disparate ML 
models into a single, 
deployable package

• Interactive with ability to 
vary different inputs and 
explore outputs in 
different formats

• Windowed GUI system  
as well as web-browser 
based



How Task 5 Can Help CCS Decision-Makers
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Phase I: Summary
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• We have generated a large volume of synthetic data for CO2
injection scenarios from three representative reservoirs, and have 
used them to build 15 machine learning-based forecasting 
models

➢ The ML-based models captured the physics of fluid flow during CO2 storage 
operations while approximating simulation outputs at 50 to 5000 times faster 
than the original runs

• We have built a prototype virtual learning environment with the 
ML-based models to demonstrate how a stakeholder can 
develop an intuitive understanding of CO2 storage site behavior 
by interacting with them

• All results are publicly available, contact SMARTFE@netl.doe.gov



Phase I: Lessons Learned
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• Reservoir Modeling and Simulation
➢ It is important to ensure that the reservoir models (and synthetic training data) accurately 

capture the underlying physics – engagement of SMEs is v ital

• Machine Learning Model Development
➢ Simpler and established models (e.g., CNN, MLP, LSTM) appear to balance speed and 

accuracy well, while complex methods are more accurate but significantly slower

➢ Data reduction/dimensionality reduction methods are promising, but have the overhead 
to transform data back to original scale which may affect the gains in prediction time 
from a smaller data size

➢ Results show that a relatively small number of simulation runs (dozens) may be sufficient to 
develop accurate ML-based forecasting models

➢ Inclusion of physics-based constraints improves ML prediction accuracy and training time. 
But, simultaneous training of pressure and saturation can be challenging due to 
unbalanced data structure and different underlying spatio-temporal features. More 
complex (or hierarchical) spatio-temporal ML models need to be explored to evaluate 
applicability of these models

➢ Models trained separately for pressure and saturation can be more accurate compared 
to those trained simultaneously
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Questions?
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