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Five Risks Were Assessed Across Studies N=|[RnA
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Materials and Manufacturing Face Greatest Risks [N=|Nanonat
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- Concerns of new
Headwinds externalities.
- Lackof domestic

/ industrial capacity.

Tailwinds |
- Consumerdemand for/
low-carbon energy.

- Need forinfrastructure
upgrades.
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Risk Profiles Are Not Uniform Across Technologies
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Mineral Dependence Is Tech-specific as Well
TL TECHNOLOGY

High (®), medium (), low (%), orno (' ) usage of our “Great 8" critical minerails. LABORATORY
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What Might the Future of CCS Be? N =|NATIONAL

TL TECHNOLOGY
LABORATORY

And what are the barriers to reaching it?
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What Might a U.S. CCS Network Look Like?
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EMITTING FACILITIES

Use of low-carbon dispatchable power...
GPI - 0.3 Gtpa >400 point sources
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Figure authored by GPI based on
results from the SIMCCS model.
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Or a bio-energy intensive network
NZAP - 1.6 Gtpa >1000 point sources
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To stress a hypothetical supply chain, this study assumed a 2050
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Princeton NZA model used as basis to scale infrastructure
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Where Would 2 Gipa Be Stored? N= [NV
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Innovation Likely Reduces Capture Chemical Risk [N=|NnonaL
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Key objective: maintain scale through material choices while improving performance.
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Material Requirements Unlikely to Strain Markets [N=[MnvA

CCS Value

Chain Segment
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Policy barriers
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Low:

Bulk/commodity

chemicals, materials.

Low:

Bulk/commodity
steels.

Low:

Bulk/commodity
steels, cements.

supply chain
Low:

Diversified suppliers,
low-cost options
outside of China.

Low:
Diversified suppliers,
overlap with NG

pipeline supply
chains.

Low:

Abundant saline
aquifer storage.

sourcing

Medium:

Chemicalsuppliers
are mostly global, but
10% growth rates will
be neededat scale.

Medium:

U.S. has limited
production capacity
for commodity steels.

Low:
Geographically
dispersedin U.S.

Medium:

Currentincentive
structures available,
but insufficient for
scale.

Medium:
Cross-border, right of
way issues for high
number of private
lands.

Medium:

Interstate pore space
rights vary.

Risks to deployment qualitatively assessed as High, Medium, or Low.




Adapting to Decarbonization Macro Shifts

The decarbonizationlandscape israpidly evolving, but multiple futures for
continued utilization of CCS infrastructure exist (especially fransportation).

CO, removal as gas/liquid.

This study!

Emissions reduced through
carbon capture.

Emissions reduced fthrough
electrification, substitufion.

CO, removal as minerals,
to biosphere.
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continues with little fo no
modificatfion.

Transportation/storage
@ / infrastructure use

Transportation
infrastructure potentially
repurposed for H, or other
energy carriers.




N: NATIONAL

= [ENERGY

TL TECHNOLOGY
LABORATORY

1. We need more mining, refining, and
manufacturing capacity 1o meet our
decarbonization objectives.

2. CCS is relatively low risk from a supply chain
perspective.

3. Impediments to growth are primarily policy
related and owing to the vast, 3-D scale of a
CCS economy.
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This project was funded by the U.S. Department of Energy, National Energy
Technology Laboratory an agency of the Unifed States Government, through a
support confract. Neither the United States Government nor any agency thereof,
nor any of itsemployees, nor the support contfractor, nor any of theiremployees,
makes any warranty, expressor implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents thatitsuse would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by frade name, trademark, manufacturer, or otherwise does not necessarily
constifute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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