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Project Team

Large, multi-institutional team contributing various insights,
datasets, machine-learning models and inversion algorithms
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Problem Statement 1

« Computational run time represents a major limitation in the
current inverse modeling process where real-time forecasts are
generated and used to consirain forecasts with monitoring data.

* Task 4 Solution:

 ML-based techniques provide an alternative to inverse modeling that
can rapidly generate forecasts, quantify the uncertainty in those
forecasts, and learn from measurements to improve forecasts over fime.

» Task 4 incorporated ML-based techniques into both the real-fime
forecasting and real-time history-matching components of the workflow.




Problem Statement 2

. Reconcilinﬁ diverse and disparate moni’rorin? datato update a
simulation history match and inform forward forecasts is an
exceptionally challenging, complex task. Doing so autonomously
and rapidly represents a major challenge but could save significant

monitoring costs by decreasing the level of effort of subject maiter
experts.

* Task 4 Solution:

« Task 4 incorporated several ML-based methods for accelerating the processing

and interpretation of monitoring data into the history-matching/real-time
forecasting workflow.

« Updated forecasts are autonomously evaluated to quantify, communicate,
and learn from monitoring data and historical frends to help identity
measurements and/or inferventions most relevant to improving storage
operations that willlead to significant CCUS site-monitoring costs.




Solution Approach
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Scientific Workflow

Inversions, sensitivity
analyses and parameter
estimation algorithms
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Scientific Workflow
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Scientific Workflow

Inversions, sensitivity
analyses and parameter
estimation algorithms
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Node Architecture
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Hardware/OS
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Platform Architecture
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Forward Model Types

e Deep learning and convolutional neural networks
e Convolutional neural network-based autoencoders
e Wide residual networks

e Longshort-term memory

e Convolutionallong short-term memory methods

e Generative adversarial networks

e (Capacitance-resistance models

e Inversionlessforecasting

e Top-down modeling approach w/ spatio-temporal learning and
deconvolutional neural networks
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Forward Model Types
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Hierarchical Optimization
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Key Findings

 Many of the different approaches have different sirengths—that is, better
accuracy with comparable speed for different predictions.

- Some of the approaches were unable to be fully integrated into the Task 4
platform, making comparison of the speed on the same platform
impossible.

» Saline aquifer models were able to compare with one another in an
apples-to-apples fashion and, in many cases, agreed quite closely.

A larger and more dynamic training data set would allow these models to
agree more consistently.




Next Steps

* In the future, developing a more user-friendly, low-code interface for the
SMART platform would allow ML developers to share code and data sets
more easily.

« During Phase ll, this platform will
o incorporate new models from several new carbon storage sites
o Interface with enhanced visualization capabilities
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Thank youl

Dr. Alex Hanna
alexander.hanna@pnnl.gov
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