U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Enhanced CO₂ Storage and Injectivity (FWP-1022403)

Angela Goodman, Lauren Burrows, Deepak Tapriyal, Foad Haeri (NETL)

Bob Enick and Parth Shah (University of Pittsburgh)

Prospective CO₂ Storage in the United States

The United States has at least 2,400 billion metric tons of CO_2 storage capacity in saline formations, oil and gas reservoirs, and unmineable coal seams

Improving CO₂ sweep efficiency with additives?

Enhanced CO₂ Storage

 Initial tests 10 years ago showed change in CO₂ migration using surfactants

CO₂ displacing brine

CO₂ displacing brine with surfactant

Improving CO₂ sweep efficiency with additives?

Enhanced CO₂ Storage

 Initial tests 10 years ago showed change in CO₂ migration using surfactants

CO2 displacing brine

CO2 displacing brine with surfactant

Surfactant partitioning and foam generation

Surfactant injected in CO₂ Phase

Avoids injection of additional water

Surfactant Partitions into the Brine The surfactant will be designed to be more soluble in brine than CO₂ Stabilizes CO_2 -in-brine Foam Generating foams is the best way to increase CO_2 viscosity

<u>Bancroft's Rule:</u> The phase in which the surfactant is more soluble will constitute the continuous phase

Mathematical basis for surfactant-enhanced CCS.

Equations governing flow through porous materials

viscosity) contribute to displacement, viscosity is

expected to have the most significant effect

 $\log M$

Pore Space Utilization

Capillary Fingering

- Low viscosity of CO₂ causes it to move quickly through the path of least resistance
- Causes low pore utilization

Stable Displacement

- Uniform sweep of CO₂
- High pore utilization

Project Goal: Optimize utilization of the available pore space for CO₂ storage by improving CO₂ displacement

Enhancing CO₂ storage with additives

<u>Approach</u>: Add dilute concentrations of inexpensive, environmentally benign surfactants to the injected CO₂

Surfactants will improve both CO₂ injectivity and sweep efficiency by:

Previous experimental work with surfactants

(A) Surfactant employed by Kim et al. in water phase.

(C) Decrease in IFT (γ) with surfactant.

(D) Increase in Sweep Efficiency (E) with surfactant.

CO₂(I) + water CO₂ L-V boundary (w/ surfactant, 4 tests) 0.5 100 at 295°K at 298°K Interfacial tension y_{fi} [mN/m] Gaseous CO₂ Liquid CO₂ CO₂(I) + water Sweep efficiency E [-] 0.4 80 (4 tests) 0 60 0.3 \diamond CO₂(g) + water CO₂-brine \diamond 0.2 (w/ surfactant, 4 tests) 40 000 CO₂-water $CO_2(g)$ + water 20 0.1 (5 tests) CO₂-water-surfactant 0 0 12 0 2 6 20 40 60 80 0 Pressure P [MPa] Capillary factor γ_f.cosθ [mN/m]

- Surfactant dissolved in water phase
- Changed wettability of SiO₂ to more CO₂-wet
- Reduced CO2-water IFT
- Increased sweep efficiency in microfluidic glass chip

Our work:

- Dissolve surfactant in CO₂
 phase
- Test using natural rock samples
- Measure sweep efficiency in rock core using CT

Kim, S.; Santamarina, J. C., Engineered CO₂ injection: The use of surfactants for enhanced sweep efficiency. International Journal of Greenhouse Gas Control **2014**, 20, 324-332.

Our experimental approach

CO₂ Soluble Surfactants

- Price \$2-3 per pound
- Pumpable liquid above its pour point temperature

- Huntsman Indorama isotridecyl ethoxylate
- "Conventional Nonionic" that remains nonionic
- TDA 9 (x=9)
- TDA 11 (x=11)
- TDA 18 (x=18)
- Pour Points
- TDA-9 (x=9) 18 C
- TDA 11 (x=11) 15 C
- TDA 18 (x=18) >25C (solid at typical ambient T; would require heating to pump)

- Huntsman Indorama polyoxyethylene cocoalkylamine
- T-5
- Nonionic; remains nonionic in CO₂
- **"Switchable Nonionic"** in that it is made as a nonionic, and remains nonionic in CO₂, but becomes a cationic surfactant in H₂O or brine when it reacts with carbonic acid
- Pour point -5 C
- Low pour point or T-5 is favorable for pumping the surfactant in cold weather

Surfactants used in this study

All surfactants are commercially-available and inexpensive (\$2-3 per pound)

Composition in Brine and CO₂

Conventional Nonionic

Ionic surfactants are usually better foamers than nonionics; but ionics are insoluble in CO₂. A "switchable" surfactant gets around this by having the surfactant start out as a nonionic that dissolves in CO₂, but then "switch" into an ionic surfactant once it partitions into the brine.

Note that when high pressure CO₂ is in contact with water or brine, a portion of the CO₂ that dissolves in the aqueous phase forms carbonic acid, and the **pH drops to ~3**

Surfactant Solubility in Brine at Ambient P

Brine

Brine with pH 3

KI - 5 wt.%KCI - 3 wt.% $H_2O - 92 wt.\%$ KI – 5 wt.% KCl – 3 wt.%

3 Wt.% KCI – 3 Wt

 $H_2O = 92$ wt.% Required Addition of HCl to attain pH 3 (to simulate high pressure carbonic acid pH)

Cloud point at 1 wt% surfactant in brine

and at atmospheric pressure are as follows

Surfactants	NETL Brine	NETL brine with pH3
1wt% TDA - 11	74.5 C	75C
1wt% TDA - 18	>100 C	>100C
0.1wt% T - 5	34.8C	35C

Surfactants are at least 1 wt% soluble in brine at Temperature < Cloud Point Temperature

The cloud point must be greater than the aquifer temperature for the surfactant to be able to partition into aquifer brine

Brine Solubility of Surfactants at 46 C

Surfactants	NETL Brine	NETL Brine with pH3	Solubility of surfactants in brine observed in many mixtures of surfactant and brine from 0.1% surfactant 99.9% brine to 95% surfactant 5% brine T-5 is not soluble above 1 wt% and also the cloud point is low compared to our condition which Is 46C
TDA 11	Completely Miscible	Completely Miscible	
TDA 18	Completely Miscible	Completely Miscible	
T-5	Miscible until 1wt%	Miscible until 1wt%	

All surfactants except T-5 are remarkably brine soluble; which is favorable for this application

Foam Stability in a Windowed Vessel

- This is a screening test, a "good foamer" in this test usually promotes the formation of high apparent viscosity foams within porous media
 - Equal volumes of CO₂ and brine are mixed at reservoir T and high P
 - About 0.1wt% surfactant (based on CO₂ mass) is also added
 - The mixture is stirred at 2000 rpm for 10 minutes
 - Initially there will be some brine at the bottom, a CO₂-in-brine foam in the middle, and excess CO₂ on top
 - The positions of the brine-foam and foam-CO₂ interfaces are monitored with time

✓ A "good" result is a large volume foam that lasts a long time (the foam may initially consume all of the CO₂)

✓ A "poor" result is a small amount of foam that collapses quickly

Foam stability with T-5 at 46 C

Time in min

T-5 yields a "good" result, all of the CO₂ is initially consumed in the foam, the foam collapses slowly, the excess CO₂ first appears after 10+ minutes, the foam is still stable after 15 minutes

Foam stability TDA-18 at 46 C

TDA -18 yields an "excellent" result, all of the CO₂ is initially consumed in the foam, the foam looks more opaque because the bubbles are smaller (< 1 mm) and the foam collapses slowly, the excess CO₂ does not appear after 24 hours, the foam is still stable until after 24 hours

Foam stability TDA-11at 46 C

CO₂ Solubility of Surfactants TDA-11 and T-5 at 46 C

TDA-18 solubility is in progress

T-5, TDA-11 and TDA-18 are all promising candidates

- T-5 has the lowest pour point , -5 C, which is favorable for use in winter
- TDA-18 is the best foamer, but is solid at 25 C and will be the least CO₂-soluble (in progress)
- TDA-11 is liquid at 25 C, is likely to be more soluble in CO₂ than TDA-18, but is very likely to be a poorer foamer than TDA-18
- The surfactants are inexpensive
- Indorama Surfonic T-5 has a new different name ULTROIL CI 2050: \$2.77/lb, Totes-FTL, EXW Pasadena, TX; Valid July 2022
- Indorama TDA 11 or 12 ALKOSYNT IT 120: \$2.33/lb, Totes-FTL, EXW Pasadena, TX; Valid July 2022
- The surfactants will likely be used at ~0.1wt% in CO₂; for example, 2 pounds T-5 per ton CO₂, or \$5.54 T-5/ton CO₂.
- It is very unlikely that the surfactant can be effective at less than 0.01wt%, or ~\$0.50 surfactant/ton CO₂

Contact Angle and Interfacial Tension at 47 C and 20 MPa

Interfacial Tension

Berea Sandstone 47C, 2900 psi, TDA 18 (0.1%)

IFT: 4.9 mN/m (CO_2 -5% brine-surfactant) IFT: 26 mN/m (CO_2 -5% brine)

Contact Angle

Future Work

