Enhanced CO$_2$ Storage and Injectivity
(FWP-1022403)

Angela Goodman, Lauren Burrows, Deepak Tapriyal, Foad Haeri (NETL)

Bob Enick and Parth Shah (University of Pittsburgh)
Prospective CO₂ Storage in the United States

The United States has at least 2,400 billion metric tons of CO₂ storage capacity in saline formations, oil and gas reservoirs, and unmineable coal seams.
Enhanced CO₂ Storage

- Initial tests 10 years ago showed change in CO₂ migration using surfactants
Improving CO$_2$ sweep efficiency with additives?

Enhanced CO$_2$ Storage

- Initial tests 10 years ago showed change in CO$_2$ migration using surfactants

![CO$_2$ displacing brine](image1.png)

![CO$_2$ displacing brine with surfactant](image2.png)
Surfactant partitioning and foam generation

Surfactant injected in CO$_2$ Phase
Avoids injection of additional water

Surfactant Partitions into the Brine
The surfactant will be designed to be more soluble in brine than CO$_2$

Stabilizes CO$_2$-in-brine Foam
Generating foams is the best way to increase CO$_2$ viscosity

Bancroft’s Rule: The phase in which the surfactant is more soluble will constitute the continuous phase
Mathematical basis for surfactant-enhanced CCS.

Equations governing flow through porous materials

(1) \[C = \frac{v_{CO2} \cdot \mu_{CO2}}{\gamma \cdot \cos \theta} \]

\(C \) = capillary number
\(\mu_{CO2} \) = viscosity of CO2
\(\gamma \) = interfacial tension (IFT)
\(v_{CO2} \) = velocity of CO2 injection
\(\theta \) = contact angle

(2) \[M = \frac{\mu_{CO2}}{\mu_{brine}} \]

\(M \) = viscosity ratio
\(\mu_{CO2} \) = viscosity of CO2
\(\mu_{brine} \) = viscosity of brine

Typical parameters at supercritical conditions

\(\mu_{brine} = 0.7 \, cp \)
\(\mu_{CO2} = 0.03 \, cp \)
\(\sigma = 30 \, \frac{mN}{m} \)
\(v_{CO2} = 2.4 \, \frac{m}{d} \)
\(\theta = 20^{\circ} \)

While all three parameters (wettability, IFT, viscosity) contribute to displacement, viscosity is expected to have the most significant effect.

Typical conditions:

1. Typical conditions
2. \(\theta = 20^{\circ} \rightarrow 70^{\circ} \)
3. \(\sigma = 30 \, \frac{mN}{m} \rightarrow 5 \, \frac{mN}{m} \)
4. \(\mu_{CO2} = 0.03 \, cp \rightarrow 16 \, cp \)
5. All 3 parameters
6. \(v_{CO2} = 2.4 \, \frac{m}{d} \rightarrow 24 \, \frac{m}{d} \)
Pore Space Utilization

Capillary Fingering
• Low viscosity of CO$_2$ causes it to move quickly through the path of least resistance
• Causes low pore utilization

Stable Displacement
• Uniform sweep of CO$_2$
• High pore utilization

Project Goal:
Optimize utilization of the available pore space for CO$_2$ storage by improving CO$_2$ displacement

Diagram:
- Yellow = supercritical CO$_2$
- Gray = brine-saturated porous rock
Enhancing CO$_2$ storage with additives

Approach: Add dilute concentrations of inexpensive, environmentally benign surfactants to the injected CO$_2$

Surfactants will improve both CO$_2$ injectivity and sweep efficiency by:

A Change wettability (θ) to more CO$_2$-wet

B Reduce CO$_2$-brine IFT (γ)

C Increase viscosity (μ_{CO2}) by stabilizing CO$_2$-in-water foams

![Sandstone surface](image1)

![CO$_2$](image2)

![Brine](image3)
Previous experimental work with surfactants

(A) Surfactant employed by Kim et al. in water phase.

(B) Increase in contact angle (θ) with surfactant.

(C) Decrease in IFT (γ) with surfactant.

(D) Increase in Sweep Efficiency (E) with surfactant.

- Surfactant dissolved in water phase
- Changed wettability of SiO$_2$ to more CO$_2$-wet
- Reduced CO$_2$-water IFT
- Increased sweep efficiency in microfluidic glass chip

Our work:
- Dissolve surfactant in CO$_2$ phase
- Test using natural rock samples
- Measure sweep efficiency in rock core using CT

Our experimental approach

Surfactant Selection
- CO₂-soluble
- MORE water soluble
- Inexpensive
- Environmentally benign

Wettability Alteration
High pressure, high temperature contact angles

Interfacial Tension (IFT)
High pressure, high temperature CO₂-brine IFT

Viscosity Increase
High pressure high temperature CO₂-brine foaming

Sweep Efficiency
- Sandstone cores
- Measure by CT

Simulations
Measure field-scale improvement in sweep efficiency using TOUGH and CO₂-SCREEN

Target experimental conditions: 46 C, 20MPa (2900 psi)
CO₂ Soluble Surfactants

- Price $2-3 per pound
- Pumpable liquid above its pour point temperature

- Huntsman Indorama **isotridecyl ethoxylate**
- “**Conventional Nonionic**” that remains nonionic
- TDA – 9 (x=9)
- TDA – 11 (x=11)
- TDA – 18 (x=18)
- Pour Points
 - TDA – 9 (x=9) 18 C
 - TDA – 11 (x=11) 15 C
 - TDA – 18 (x=18) >25C (solid at typical ambient T; would require heating to pump)

- Huntsman Indorama **polyoxyethylene cocoalkylamine**
- T – 5
- Nonionic; remains nonionic in CO₂
- “**Switchable Nonionic**” in that it is made as a nonionic, and remains nonionic in CO₂, but becomes a cationic surfactant in H₂O or brine when it reacts with carbonic acid
- Pour point -5 C
- Low pour point or T-5 is favorable for pumping the surfactant in cold weather
Surfactants used in this study

All surfactants are commercially-available and inexpensive ($2-3 per pound)
Ionic surfactants are usually better foamers than nonionics; but ionics are insoluble in CO₂. A “switchable” surfactant gets around this by having the surfactant start out as a nonionic that dissolves in CO₂, but then “switch” into an ionic surfactant once it partitions into the brine.

Note that when high pressure CO₂ is in contact with water or brine, a portion of the CO₂ that dissolves in the aqueous phase forms carbonic acid, and the pH drops to ~3.
Surfactant Solubility in Brine at Ambient P

Brine
KI – 5 wt.%
KCl – 3 wt.%
H₂O – 92 wt.%

Brine with pH 3
KI – 5 wt.%
KCl – 3 wt.%
H₂O – 92 wt.%

Required Addition of HCl to attain pH 3 (to simulate high pressure carbonic acid pH)

Cloud point at 1 wt% surfactant in brine
and at atmospheric pressure are as follows

<table>
<thead>
<tr>
<th>Surfactants</th>
<th>NETL Brine</th>
<th>NETL brine with pH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1wt% TDA - 11</td>
<td>74.5 C</td>
<td>75C</td>
</tr>
<tr>
<td>1wt% TDA - 18</td>
<td>>100 C</td>
<td>>100C</td>
</tr>
<tr>
<td>0.1wt% T - 5</td>
<td>34.8C</td>
<td>35C</td>
</tr>
</tbody>
</table>

Surfactants are at least 1 wt% soluble in brine at Temperature < Cloud Point Temperature

The cloud point must be greater than the aquifer temperature for the surfactant to be able to partition into aquifer brine
Brine Solubility of Surfactants at 46 C

<table>
<thead>
<tr>
<th>Surfactants</th>
<th>NETL Brine</th>
<th>NETL Brine with pH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDA 11</td>
<td>Completely Miscible</td>
<td>Completely Miscible</td>
</tr>
<tr>
<td>TDA 18</td>
<td>Completely Miscible</td>
<td>Completely Miscible</td>
</tr>
<tr>
<td>T-5</td>
<td>Miscible until 1wt%</td>
<td>Miscible until 1wt%</td>
</tr>
</tbody>
</table>

Solubility of surfactants in brine observed in many mixtures of surfactant and brine from 0.1% surfactant 99.9% brine to 95% surfactant 5% brine

T-5 is not soluble above 1 wt% and also the cloud point is low compared to our condition which Is 46C

All surfactants except T-5 are remarkably brine soluble; which is favorable for this application.
Foam Stability in a Windowed Vessel

• This is a screening test, a “good foamer” in this test usually promotes the formation of high apparent viscosity foams within porous media

• Equal volumes of CO$_2$ and brine are mixed at reservoir T and high P
• About 0.1wt% surfactant (based on CO$_2$ mass) is also added
• The mixture is stirred at 2000 rpm for 10 minutes
• Initially there will be some brine at the bottom, a CO$_2$-in-brine foam in the middle, and excess CO$_2$ on top
• The positions of the brine-foam and foam-CO$_2$ interfaces are monitored with time

✓ A “good” result is a large volume foam that lasts a long time (the foam may initially consume all of the CO$_2$)
✓ A “poor” result is a small amount of foam that collapses quickly
Foam stability with T-5 at 46 C

Foam stability test of T-5 in brine dissolved in CO₂ at 46 C and 2900 psia (20 MPa)

T-5 yields a “good” result, all of the CO₂ is initially consumed in the foam, the foam collapses slowly, the excess CO₂ first appears after 10+ minutes, the foam is still stable after 15 minutes
Foam stability TDA-18 at 46 C

TDA-18 yields an “excellent” result, all of the CO₂ is initially consumed in the foam, the foam looks more opaque because the bubbles are smaller (< 1 mm) and the foam collapses slowly, the excess CO₂ does not appear after 24 hours, the foam is still stable until after 24 hours.
Foam stability TDA-11 at 46 C

Experiments in progress
CO$_2$ Solubility of Surfactants TDA-11 and T-5 at 46 C

TDA-18 solubility is in progress

The CO$_2$-solution pressure must remain above the cloud point for the surfactant to dissolve in CO$_2$ at the desired concentration.

To dissolve 0.1 wt% of ether surfactant in CO$_2$ at 46C, the P must be 14 MPa or more.
T-5, TDA-11 and TDA-18 are all promising candidates

- T-5 has the lowest pour point, -5 C, which is favorable for use in winter
- TDA-18 is the best foamer, but is solid at 25 C and will be the least CO$_2$-soluble (in progress)
- TDA-11 is liquid at 25 C, is likely to be more soluble in CO$_2$ than TDA-18, but is very likely to be a poorer foamer than TDA-18
- The surfactants are inexpensive
 - Indorama Surfonic T-5 has a new different name **ULTROIL CI 2050**: $2.77/lb, Totes-FTL, EXW – Pasadena, TX; Valid July 2022
 - Indorama TDA 11 or 12 **ALKOSYNT IT 120**: $2.33/lb, Totes-FTL, EXW – Pasadena, TX; Valid July 2022
- The surfactants will likely be used at ~0.1wt% in CO$_2$; for example, 2 pounds T-5 per ton CO$_2$, or 5.54 T-5/ton CO$_2$.
- It is very unlikely that the surfactant can be effective at less than 0.01wt%, or ~$0.50 surfactant/ton CO$_2$
Contact Angle and Interfacial Tension at 47 C and 20 MPa

Interfacial Tension

Berea Sandstone

47C, 2900 psi, TDA 18 (0.1%)

IFT: 4.9 mN/m (CO₂-5% brine-surfactant)
IFT: 26 mN/m (CO₂-5% brine)

Contact Angle

- 25°, 776 μm
- 27°, 1050 μm
- 21°, 1291 μm
Future Work

- Complete cloud point, solubility, and viscosity measurements (T-5, TDA-11, TDA-18)
- Complete Contact angle and IFT (T-5, TDA-11, TDA-18)
- Select two surfactants to measure sweep efficiency
- Conduct simulations to estimate improvement of sweep efficiency

Viscosity Increase
- High pressure, high temperature CO$_2$-brine foaming

Wettability Alteration
- High pressure, high temperature contact angles

Interfacial Tension (IFT)
- High pressure, high temperature CO$_2$-brine IFT

Sweep Efficiency
- Sandstone cores
- Measure by CT

Simulations
- Measure field-scale improvement in sweep efficiency using TOUGH and CO$_2$-SCREEN