Refining Storage Efficiency Factors in Saline Systems (CO₂-SCREEN) FWP-1022403

Angela Goodman, Foad Haeri, Evgeniy M. Myshakin, Sean Sanguinito, Johnathan Moore, Dustin Crandall

National Energy Technology Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Prospective CO₂ Storage Quantification

Carbon Storage Atlases

<u>NETL's Regional Carbon</u> <u>Sequestration Partnership (RCSP)</u>

<u>Carbon Storage Assurance Facility</u> <u>Enterprise (CarbonSAFE)</u>

- Geologic storage of 50+ million metric tons of CO₂
- 13 Pre-feasibility projects
- 6 feasibility projects

- 186 232 GT
- 54 113 GT 2,379 -

2,379 - 21,633 GT

BSCSP: Big Sky Carbon Sequestration Partnership
 MGSC: Midwest Geological Sequestration Consortium
 MRCSP: Midwest Regional Carbon Sequestration Partnership
 PCOR: The Plains CO₂ Reduction Partnership
 SECARB: Southeast Regional Carbon Sequestration Partnership
 SWP: Southwest Partnership on Carbon Sequestration
 WESTCARB: West Coast Regional Carbon Sequestration Partnership

Prospective CO₂ Storage Quantification

<u>NETL's Regional Carbon</u> Sequestration Partnership (RCSP)

O PCOR

<u>Carbon Storage Assurance Facility</u> <u>Enterprise (CarbonSAFE)</u>

- The purpose of storage estimates developed using these methodologies is to provide a high-level inventory of the subsurface volume to store CO₂ in the United States and Canada.
 - This information can be used by the general public, elected officials, and planners

50+ million metric

rojects

6 feasibility projects

186 - 232 GT

Sequestration

54 - 113 GT 2,379

2,379 - 21,633 GT

SWP: Southwest Partnership on Carbon Sequestration **WESTCARB**: West Coast Regional Carbon Sequestration Partnership

Methods Based on NETL's Best Practice Manuals

CO₂ Classification Table

Methods Based on NETL's Best Practice Manuals

CO₂ Classification Table

Society of Petroleum Engineers' Storage Resources Management System

https://experts.illinois.edu/en/publications/the-co2-storage-resources-management-system-srms-toward-a-common-

Classification: Prospective Storage Resources(*Undiscovered* Storage Resources)

Well does not exist or not assessed

Play: A project associated with a prospective trend of potential prospects, but that requires more data acquisition and/or evaluation to define specific leads or prospects.

Lead: A project associated with undiscovered storable quantities that is currently poorly defined and requires more data acquisition and/or evaluation to be classified as a prospect.

Prospect: A project associated w/ undiscovered storable quantities sufficiently defined to represent a viable drilling target

Ends with a drilling prospect or existing well identified to assess

Project Maturity Sub-classes STORED On Injection STORAGE RESOURCES COMMERCIAL Approved for Development CAPACITY TOTAL STORAGE RESOURCES Justified for Development -COMMERCIAL **Development Pending** DISCOVERED CONTINGENT **Development On Hold** STORAGE **Development Unclarified** RESOURCES **Development Not Viable** INACCESSIBLE UNDISCOVERED Prospect PROSPECTIVE RESOURCES STORAGE STORAGE Lead RESOURCES Play INACCESSIBLE RANGE OF UNCERTAINTY

https://www.spe.org/en/industry/co2-storage-resources-management-system/

INCREASING CHANCE OF COMMERCIALITY

PROCESS FLOWCHART FOR SITE SCREENING

Saline Methodology Equation

Subsurface Data Analysis

i. Injection Formation

- Saline Formations, TDS > 10,000 ppm

ii. Adequate Depth

Sufficient depth to maintain injected CO₂ in the supercritical state ~800 m

iii. Confining Zone

- Contain injected CO₂

iv. Prospective Storage Resources

 Sufficient pore volumes and can accept the change in pressure to accommodate planned injection volumes

Parameter	Units ^a	Description
G _{CO2}	М	Mass estimate of saline formation CO ₂ storage resource.
At	L ²	Geographical area that defines the basin or region being assessed for CO ₂ storage.
hg	L	Gross thickness of saline formations for which CO ₂ storage is assessed within the basin or region defined by <i>A</i> .
$\phi_{ m tot}$	L ³ /L ³	Total porosity in volume defined by the net thickness.
ρ	M/L ³	Density of CO ₂ evaluated at pressure and temperature that represents storage conditions anticipated for a specific geologic unit averaged over he and At.
E _{saline}	L ³ /L ³	CO_2 storage efficiency factor that reflects a fraction of the total pore volume that is filled by CO_2 .

Potential Sub-Regions

• limited or unavailable geologic data

 $G_{CO_2} = A_t h_g \phi_t \rho E_{saline}$

- Selected Areas
 - increased data availability and adv. geologic interpretation

 $G = A^{d}h^{s}\phi^{s}\rho^{s}E_{saline}^{s}$ $E_{saline}^{s} = E_{A}^{s}E_{h}^{s}E_{\phi}^{s}E_{V}^{s}E_{d}^{s}$

Potential Sub-Regions

$E_{\text{saline}} = E_{\text{An/At}} E_{\text{hn/hg}} E_{\text{\phi}e/\text{\phi}tot} E_{\text{v}} E_{\text{d}}$							
Lithology	P ₁₀	P_{50}	P_{90}				
Clastics	0.51%	2.0%	5.4%				
Dolomite	0.64%	2.2%	5.5%				
Limestone	0.40%	1.5%	4.1%				

Saline formation efficiency factors for geologic and displacement terms.

Log-odds stochastic approach

 $E_{\text{saline}} = E_A E_h E_{\varphi} E_V E_d$

Torm	Symbol	P ₁₀ /P ₉₀	Values by L	ithology	Decorintion
Term	Symbol	Clastics	Dolomite	Limestone	Description
	Geologic (terms used t	o define the	entire basin	or region pore volume
Net-to-Total Area	E _{An/At}	0.2/0.8	0.2/0.8	0.2/0.8	Fraction of total basin or region area with a suitable formation.
Net-to-Gross Thickness	E _{hn/hg}	0.21/0.76*	0.17/0.68*	0.13/0.62*	Fraction of total geologic unit that meets minimum porosity and permeability requirements for injection.
Effective-to- Total Porosity	E _{¢e/¢tot}	0.64/0.77*	0.53/0.71*	0.64/0.75*	Fraction of total porosity that is effective, i.e., interconnected.
Displacement	t terms us	ed to define	the pore vol inje	ume immedi ector.	ately surrounding a single well CO ₂
Volumetric Displacement Efficiency	Ev	0.16/0.39*	0.26/0.43*	0.33/0.57*	Combined fraction of immediate volume surrounding an injection well that can be contacted by CO_2 and fraction of net thickness that is contacted by CO_2 as a consequence of the density difference between CO_2 and in-situ water.
Microscopic Displacement Efficiency	E _d	0.35/0.76*	0.57/0.64*	0.27/0.42*	Fraction of pore space unavailable due to immobile <i>in-situ</i> fluids.
*Values from	IEA (2009)/Gorecki (20	009)		CREENHOUS
	C Energy	& Environmen ERC The International Center	tal Research Ce for Applied Energy Technology	enter	9

CO₂-SCREEN

 ${\rm CO}_2$ Storage prospeCtive Resource Estimation Excel aNalysis

CO₂-SCREEN is a user-friendly tool that allows quick and reliable estimates of prospective CO₂ storage sites

CO₂-Screen establishes the scale of carbon capture and storage activities for governmental policy and commercial project decisionmaking

How Much CO₂ Can be Stored in the Subsurface?

Conventional coal fired power plants release CO₂ directly into the atmosphere. Plants equipped with CCS will capture much of the CO₂ instead.

> 2 Liquid CO₂ can be transported by pipeline or truck. Depleted oil or gas reserved

Alternative possible locations for CO₂ storage 2021: Nominated for R&D 100 award 2019: ICHEME finalist

CO₂-SCREEN has been downloaded more than 600 times and cited 194 times in peer-reviewed journals.

CO₂-Screen supports Carbon Storage field tests

Provides prospective carbon storage resource estimates in subsurface formations

- saline formations
- shale formations
- residual oil zones

CO₂-SCREEN was developed by the United States Department of Energy's National Energy Technology Laboratory with partners at the Carbon Storage Assurance Facility Enterprise (CarbonSAFE), Illinois State Geological Survey, Energy & Environmental Research Center, United States Geological Survey

CO₂ can be injected and stored deep

underground.

Unmineable coal

beds

Deep salin

oquifer

CO₂-Screen can be accessed at:

- NETL's EDX <u>https://edx.netl.doe.gov/dataset/co2-screen</u>
- YOUTUBE https://www.youtube.com/watch?v=lhakk-HYfOI

Next Steps: Update Efficiency with New Relative Permeability Data

CO₂BRA Database

An open dataset of unsteady state relative permeability measurements of supercritical CO₂ displacing brine in 12+ rock types. <u>https://edx.netl.doe.gov/hosting/co2bra/</u>

Capabilities at NETL

Four computed tomography scanners with 3D resolution from microns to millimeters, all with ancillary core flow capabilities, used for examining real rocks under real conditions applicable to storage and production.

Homogenous models - Reservoir Modeling

 $E_{V} =$

GASIS Database

Homogenous models

Model dimensions		
Width	5,000	m
Length	5,000	m
Thickness	50	m
Domain discretization	35×35×43	
Number of grids	52,675	
Rock properties		
Porosity	variable*	
Permeability (lateral)	variable*	
Permeability anisotropy	variable*	
Relative permeability	variable*	
Capillary pressure	variable*	
Reservoir properties		
Initial pressure	variable*	
Pressure gradient	10.14	kPa/m
Initial temperature	variable*	
Temperature gradient	0.02	°C/m
Brine concentration	8	%
Pore compressibility	4.5E-10	Pa ⁻¹
Operation properties		
Injection rate	variable*	
Injection period	30	years
Perforation	bottom source point	

 $E_{saline}^{\ \ s} = E_A^{\ \ s} E_h^{\ \ s} E_{\phi}^{\ \ s} E_V^{\ \ s} E_d^{\ \ s}$ top vie

$$\frac{V_i}{Ah\rho\phi(1-S_{w_{irr}})} \qquad E_d = 1 - S_{w_{ave}}$$

50 m top view Y CO₂ injection 10 km **TOUGH3-ECO2M**

5000 m

10 kn

5000 m

*Varies based on modeling cases

CO₂BRA Database

	Lithology	Depositional Environment	Sample Name	Min Por	Min Por	Min Perm	Max Perm
						mD	mD
1	Sandstone	Marginal Marine	Bandera Brown A	0.1	0.3	50	350
2		Strand Plain, Barrier Bar	Berea	0.1	0.3	100	700
3		Deltaic Complex Fluvial	Castlegate	0.1	0.3	200	1000
4		Aeolian	Navajo	0.15	0.25	20	800
5	Limestone	Shallow Marine	Austin Chalk	0.1	0.3	50	150
6		Reef	Edwards Yellow	0.1	0.25	50	110
7	Dolomite	Reef	Silurian	0.1	0.3	100	400

GASIS: Gas Information System (Hugman et al., 2016)

Homogenous models - Reservoir Modeling

Coupling CO₂BRA and TOUGH3 using a lookup table

Homogenous models - Simulation Results

	Modeling Cases									
Case		Permeability	Temperature	Pressure		Rate				
No.	Porosity	(mD)	(°C)	(MPa)	Kv/Kh	(tons/day)	Ev	Ed		
1	0.1	100	43.3	9.65	0.5	400	23.69	43.03		
2	0.1	100	43.3	9.65	0.5	800	29.27	43.63		
3	0.1	100	43.3	9.65	0.1	400	23.80	42.97		
4	0.1	100	43.3	9.65	0.1	800	29.35	43.60		
5	0.1	100	87.8	27.6	0.5	400	34.20	43.89		
6	0.1	100	87.8	27.6	0.5	800	44.28	44.83		
7	0.1	100	87.8	27.6	0.1	400	34.55	43.85		
8	0.1	100	87.8	27.6	0.1	800	44.32	44.74		
9	0.3	700	43.3	9.65	0.5	400	11.56	41.24		
10	0.3	700	43.3	9.65	0.5	800	16.24	42.27		
11	0.3	700	43.3	9.65	0.1	400	12.96	40.63		
12	0.3	700	43.3	9.65	0.1	800	16.69	42.10		
13	0.3	700	87.8	27.6	0.5	400	17.40	40.73		
14	0.3	700	87.8	27.6	0.5	800	22.76	42.54		
15	0.3	700	87.8	27.6	0.1	400	17.52	40.45		
16	0.3	700	87.8	27.6	0.1	800	22.78	42.47		
						P ₁₀	14.60	40.68		
						P50	23.24	42.76		
						P ₉₀	39.42	44.32		

Modeling cases used for Strand Plain Sandstone Impact of injection rate, pressure & temperature, porosity & permeability, and permeability anisotropy on CO₂ plume shape and storage efficiency factors

Homogenous models - Simulation Results

ELSEVIE

Table 5 – Saline formation efficiency factors (%) using homogenous models.

	E _{saline} (Go	oodman et	al, 2011)		E _{saline} (This study)				
Lithology	P10	P ₅₀	P90		P10	P ₅₀	P90		
Clastics	7.4	14.0	24.0	Π	4.5	10.0	19.1		
Limestone	10.0	15.0	21.0		6.8	13.6	24.2		
Dolomite	16.0	21.0	26.0		18.4	25.6	32.5		
			-						

- In both studies, dolomite followed by limestone had the highest values
- Refinements to previous storage efficiency factors:
 - □ narrower range for clastics
 - □ wider range for limestone
 - higher P10 and P90 for dolomite

International Journal of Greenhouse Gas Control 119 (2022) 103720

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Simulated CO₂ storage efficiency factors for saline formations of various lithologies and depositional environments using new experimental relative permeability data

Foad Haeri^{a,b,*}, Evgeniy M. Myshakin^{a,b}, Sean Sanguinito^{a,b}, Johnathan Moore^{a,b}, Dustin Crandall^a, Charles D. Gorecki^c, Angela L. Goodman^a

Greenhous Gas Contro

Lower Mt. Simon Sandstone Shallow Marine

3,320 - 3,507 TVD bgs (164 ft) at Duke Energy #1 Well (East Bent Field, Boone County, Kentucky)

Lower Mt. Simon Sandstone Shallow Marine

3,320 - 3,507 TVD bgs (164 ft) at Duke Energy #1 Well (East Bent Field, Boone County, Kentucky)

Lower Mt. Simon Sandstone Shallow Marine

3,320 - 3,507 TVD bgs (164 ft) at Duke Energy #1 Well (East Bent Field, Boone County, Kentucky)

Lower Mt. Simon Sandstone Shallow Marine

3,320 - 3,507 TVD bgs (164 ft) at Duke Energy #1 Well (East Bent Field, Boone County, Kentucky)

Lower Mt. Simon Sandstone Shallow Marine

3,320 - 3,507 TVD bgs (164 ft) at Duke Energy #1 Well (East Bent Field, Boone County, Kentucky)

Variation of CO₂ plume shape impacted by the ratio of buoyancy to capillary force expressed by Bond number

 B_{o} : Bond number = Buoyancy force/Capillary force

 $B_o = \frac{\Delta \rho g k_V}{2}$

 $B_o > 1$: Buoyancy dominates $B_o < 1$: Capillarity dominates

Selected Areas

	E_{so}	aline ^s =	$= E_A$	$^{s}E_{h}^{s}E$	$E_{\phi}^{s} E_{V}^{s} E_{d}^{s}$		Dynamic v eff
🖤 CO2-Screen					- 🗆 ×		
File Help							
Simulation Setup P	hysical Parameters	Efficiency Factors	Outputs				
Saline				Sandsto Limesto	one: Shallow Marine (N Fluvial (Cranfield) Aeolian (Broom Cr one: Reef (<u>Duperow</u>)	1t. Simon) eek)	
CO2BRA (2022)) IEA (20)9)	/	Dolomi	te:		100
CO2BRA (2022)				•	Shallow Marine (B	ass Island)	<u>.</u>
Lithology and De	epositional Environme	nt San	dstone: Sha	llow Marine	•		Impact of di
Injection Durati	ion (years)	_			1 💌		а
Net-to-Total Ar	rea	P ₁₀		P ₉₀			High Keylich
Net-to-Gross T	hickness						1 E, E, 43.96 40.92
Effective-to-Tot	tal Porosity					te est	—
Volumetric Dis	placement	.17		0.35 Value s	hould be between 0 and 1 use fi		5 E, E, 32.11 43.16
Microscopic Di	isplacement (.29		0.36			
		CO ₂ Brin	e R elativ	CO₂BRA D	atabase pility A ccessible Databa	se	

https://edx.netl.doe.gov/dataset/co2_brine_relative_permeability_database

Dynamic variation of plume shape and efficiencies (Mt. Simon)

Selected Areas

 $E_{saline}{}^{s} = E_{A}{}^{s}E_{h}{}^{s}E_{\phi}{}^{s}E_{V}{}^{s}E_{d}{}^{s}$

🖤 CO2-Screen					-		×	
File Help								
Simulation Setup Physical Par	ameters Efficie	ncy Factors	Outputs]				
Saline				Sandsto Limesto	one: Shallow Fluvial ((Aeolian one: Reef (Du	Marin Cranfie (Broor	e (Mt. eld) n Cree ()	Simon) k)
CO2BRA (2022)	IEA (2009)			Dolomit	te:			
CO2BRA (2022)				•	Shallow	Marin	e (Bas	s Island)
Lithology and Depositional Injection Duration (years)	Environment	Sand	stone: Sha	llow Marine	1	•		
Net-to-Total Area		P ₁₀		P ₉₀]		F
Net-to-Gross Thickness								L.
Effective-to-Total Porosity]		Los Par
Volumetric Displacement	0.17			0.35	hould be between	an 0 and 1	1150 50	
Microscopic Displacemen	nt 0.29			0.36	nould be betwee	en o and 1,	USE IIE	2
								- F 🕴

CO₂BRA Database

CO₂ Brine Relative Permeability Accessible Database https://edx.netl.doe.gov/dataset/co2_brine_relative_permeability_database Dynamic variation of plume shape and efficiencies (Mt. Simon)

Impact of different properties on CO₂ plume shape and storage efficiency factors

Selected Areas

R

E_s	$e_{aline}{}^s = E_A$	$A^{s}E_{h}^{s}E_{\phi}^{s}E_{V}^{s}$	${}^{s}E_{d}{}^{s}$
CO2-Screen le Help Simulation Setup Physical Parameters	Efficiency Factors Output	-	
Saline Enter Values © CO2BRA (2022) CO2BRA (2022)	009)	Sandstone: • Shallow M • Fluvial (Cl • Aeolian (I Limestone: • Reef (Dur Dolomite: • Shallow M	/larine (Mt. Simon) ranfield) Broom Creek) Derow) /larine (Bass Island)
Lithology and Depositional Environm Injection Duration (years)	ent Sandstone: S	ihallow Marine	▼
Net-to-Total Area Net-to-Gross Thickness Effective-to-Total Porosity Volumetric Displacement Microscopic Displacement	P ₁₀	P ₉₀	10 and 1, use fic
			T 💆

CO₂BRA Database

CO₂ Brine Relative Permeability Accessible Database https://edx.netl.doe.gov/dataset/co2_brine_relative_permeability_database Dynamic variation of plume shape and efficiencies (Mt. Simon)

Selected Areas

E	saline ^s =	$E_A^s E_h^s E_h^$	$E_{\phi}{}^{s}E_{V}{}^{s}E_{d}{}^{s}$;
♥ CO₂-Screen			- 🗆 ×	
File Help				
Simulation Setup Physical Parameter	rs Efficiency Factors	Outputs		
Saline Enter Values © CO2BRA (2022) CO2BRA (2022)	(2009)	Sandsto Limesto Dolomit	ne: Shallow Marine (Fluvial (Cranfield Aeolian (Broom (ne: Reef (<u>Duperow</u>) te: Shallow Marine ((Mt. Simon)) Creek) (Bass Island)
	\neg \angle			
Lithology and Depositional Environ	arment Sand	Istone: Shallow Marine	•	
Injection Duration (years)			1 💌	
	P 10	P ₉₀		_
Net-to-Total Area				
Net-to-Gross Thickness				
Effective-to-Total Porosity				184 ma
Volumetric Displacement	0.17	0.35		
Microscopic Displacement	0.29	0.36	tould be between 0 and 1, us	

CO₂BRA Database CO₂ Brine Relative Permeability Accessible Database

https://edx.netl.doe.gov/dataset/co2_brine_relative_permeability_database

Dynamic variation of plume shape and efficiencies (Mt. Simon)

30

Selected Areas

 $E_{saline}{}^{s} = E_{A}{}^{s}E_{h}{}^{s}E_{\phi}{}^{s}E_{V}{}^{s}E_{d}{}^{s}$

🖤 CO2-Screen					-		\times		
File Help									
Simulation Setup	Physical Parameters	Efficiency Factors	Outputs]					
Saline Enter Values		09)	,	Sandstone • Sh • Flu • Ae Limestone • Re Dolomite:	: allow I vial (C olian (: ef (Du	Marir Tranfi Broo Perov	ne (M eld) m Cre <u>w</u>)	lt. Simo eek)	n)
CO2BRA (2022)	22) UEA (20	09)		• Sh	allow I	Marir	ne (Ba	ass Islar	nd)
Lithology and Injection Dur	Depositional Environme ration (years)	nt	lstone: Sha	llow Marine	1	•			
Net-to-Total	Area [P ₁₀		P ₉₀					
Net-to-Gross	s Thickness								
Effective-to-7	Total Porosity								2
Volumetric D	Displacement).17		0.35	ho hotwoo	n 0 and 1	Lueo fic		5
Microscopic	Displacement).29		0.36	ne netwee	n o and	r, use lie		
				CO ₂ BRA Datab	ase				

CO2 Brine Relative Permeability Accessible Database https://edx.netl.doe.gov/dataset/co2 brine_relative_permeability_database Dynamic variation of plume shape and efficiencies (Mt. Simon)

Impact of different properties on CO₂ plume shape and storage efficiency factors

E_v E_d 18.98 36.43

E_v E_d 20.33 44.48 E_v E_d 18.65 37.62

E_v E_d 21.11 45.94

31

Bass Islands Shallow Marine Dolomite

E_v E_d 38.78 40.52

E_v E_d 30.72 44.35

fich Ky/R

E_v E_d 43.96 40.92

E, E, 32.11 43.16

Shale Methodology Equation

 $G_{CO_2} = A_t E_A h_g E_h \left[\rho_{CO_2} \phi E_\phi + \rho_{SCO_2} (1 - \phi) E_S \right]$

Net effectiveEfficiency of storageformation volumeas free gas

Efficiency of storage in sorbed phase

 E_{ϕ} : P₁₀ to P₉₀ range of 0.15 to 0.36 E_s: P₁₀ to P₉₀ range of 0.11 to 0.24

ROZ Methodology Equation

IOITIGIIOI

volume

$$G_{CO_{2}} = A_{t}E_{A}h_{g}E_{h}\phi_{tot}E_{\phi}\left[(1 - S_{wirr} - S_{or})\rho_{CO_{2}}E_{v} + S_{or}R_{C/O}E_{Ds}\right]$$

Net effective
formation
Sweep
Efficiency
CO₂ dissolution in oil

 E_{ROZ} : P₁₀ to P₉₀ range of 0.6 to 7.0

Notable groups that have used CO₂-SCREEN

Academia

USA

Groups

- Carnegie Melon University (PA, USA)
- Colorado School of Mines (CO, USA)
- Louisiana State University (LA, USA)
- New Mexico Tech (NM, USA)
- Oklahoma State University (OK, USA)
- Texas A&M University (TX, USA)
- Carleton University (Canada)
- Central University of Ecuador (Ecuador)
- Chinese Academy of Sciences (China)
- Heriot Watt University (UK)
- Non-USA Groups
 - Indian Institute of Technology Bombay (India)
 - King Abd. Univ. of Science and Technology (Saudi Arabia)

Ho Chi Minh City University of Technology (Vietnam)

- King Juan Carlos University (Spain)
- La Universidad Nacional de Ingenieria (Peru)
- National University of Singapore (Singapore)
- Pandit Deendayal Petroleum University (India)
- Seoul National University College of Medicine (South Korea)

- The University of North Dakota (ND, USA)
- The University of Texas at Austin (TX, USA)
- The University of Oklahoma (OK, USA)
- The University of Wyoming (WY, USA)

- Silesian University of Technology (Poland)
- The Universidad de Monterrey (Mexico)
- The University of Trinidad and Tobago (Trinidad and Tobago)
- Tsinghua University (China)
- Universidad Estatal Peninsula de Santa Elena (Ecuador)
- Universidad Nacional de Colombia (Colombia)
- University College of London (UK)
- University of Alberta (Canada)
- University of Calgary (Canada)
- Xi'an Shiyou University (China)

Notable groups that have used CO₂-SCREEN

 Industry Advanced Resources Int. (VA, USA) Battelle (OH, USA) BP (British Petroleum) (TX, USA) Burns McDonnel (MI, USA) Central Resources INC (CO, USA) Chevron (TX, USA) Dale Operating Company (TX, USA) DeGolyer and MacNaughton (TX, USA) Elysian (CT, USA) EOG Resources (TX, USA) Evolved Energy Research (CA, USA) 	 Exxon Mobile (TX, USA) Jupiter Oxygen (IL, USA) Lonquist & Co. LLC (USA) Merchang Consulting (TX, USA) Mitre (MA, USA) Mitsubishi Corp. (TX, USA) Nanoswitch (TX, USA) Oceanit (TX, USA) Ocelot Consulting (MO, USA) Optimal Energy (VT, USA) Oxy (TX, USA) 	 Pelican Energy (LA, USA) Roil Energy (FL, USA) Rose & Associates (TX, USA) RZG LLC (OK, USA) Samuel Gary Jr. & Associates (CO, USA) SCS Engineers (CA, USA) Talos Energy (TX, USA) Weyerhaeuser (WA, USA)
 Advantage Energy LTD (Canada) Non-USA Baker Hughes (UK) Beicip-Franlab (Napoleon Bonaparte, France) gopptian General Petroleum Corp. (gypt) Enquest (UK) Fenix Consulting Delft (Netherlands) Gassnova (Trondheim, Norway) 	 Geogreen (France) Kiwetinohk Energy (Canada) Lloyd's Register (Great Britain) Molyneux Advisors (Australia) Origin (Australia) Reliance Industries Limited (India) Repsol (Norway) SI-SRL (Italy) 	 SK (South Korea) Soluzioni Indrocarburi (Italy) Volta Oil & Gas (UK) WSP (Chili) YPF Technology (Chili)

Notable groups that have used CO₂-SCREEN

Research

USA

Groups

- Battelle (OH, USA)
- Bureau of Ocean Energy Management (USA)
- CarbonSafe (USA)
- Department of Interior (USA)
 - Energy & Environmental Research Center (ND, USA)
 - Lawrence Livermore National Laboratory (CA, USA)
 - Petroleum Recovery Research Center (NM, USA)
 - Indiana Geological & Water Survey (IN, USA)

Non-USA Groups

- The French Institute of Petroleum (IFPEN) (France)
- Petroleum Learning Centre (UK)
- The Geological and Mining Institute of Spain (Spain)

