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Task 2 : Rock Property Visualization

Task 2 Mission: Evaluate existing and state of the art technologies for incorporating multiple
types of disparate scale data to assess rock properties (CO, saturation for Phase 1) in a ‘real
time’ sense and identify/apply/test machine learning strategies that can aid in this endeavor.

Task 2: Rock Property Visualization Project Leadership
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Task 2 : Rock Property Visualization

« Task 2 Goal For Phase 1 : Proof of concept for applying Physics-Based Machine Learning for providing
estimates of CO, saturation at depth, along with uncertainties in those estimates, at 1 to 10m
resolution.

» Specific Sub-Tasks

1. Determine data that we will be using for testing, and how that data will be used for estimating CO,
saturation

a. Core-to-Well scale: What data measured in lab provides value to estimating CO, saturation at target
resolution?

b. Well-to-field scale: What multi-physics data should we use, and how to use it to estimate CO,
saturation?

2.  Implement and test physics-based approaches for estimating CO, saturation from v arious data types
3. Implement and test ML approaches for
1. Estimating CO, saturation from the various scales and types of data
a. Upscaling from the Core-to-Well scale to the target resolution

b. Downscaling from the Well-to-Field scale to target resolution, and provide images of CO,
saturation rather than geophysical properties

2. Provide estimates of uncertainty of CO, saturation at different scales
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Task 2 Data : Kimberlina 1.2 Model/Data Creation

Unstructured TOUGH2 Mesh - Using 100 different realizations / TOUGH2 runs

Vp at 20 Yearson Reqgular . .
R FlOm x 10m x 10m) grid of the Kimberlina 1.2 Model
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H o Eachrealization has 35 different time steps
|
Test Data sets computed for Year 0 and Year
20 from Sim001
2D Testing
ST Y (km) X (km) ini i
- O o Training datacomputed along Y-Lines from
X=-2to X=3km for all 35 time stepsin Sim001
— 2D surface seismic at X=100m interv als

X= 0,5 km ¥Y=0.5km
o |nterpolation/extrapolationto regular grid more
o TestdatacomputedalongY direction at X=0in
— Borehole-to-surface EM with 2 sources at X=200m

0 ° 0 |
wl LI | | difficult than expected
| @ |
-1 . B - 5t : ; ais ; ; . Year 0 and Year 20
— Gravityin 2 boreholes per line and surf at X=200m
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Regular fine mesh

« 3D Testing
o Use all 100 Sims and 35 Time steps

Vp (km/sec)

CO, Saturation 28 o For EM and Gravity use 3 monitoring wells
Vp and Vs s shown to left for borehole sources/data
Density 0 2 ‘
X m) « All models/data to be uploaded to EDX

Resistivity
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Task 2 Data : Kimberlina 1.2 Model/Data Creation
Time Lapse Calc. Geophysical Data (Year 20- Year 0)
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Task 2 Data : Kimberlina 1.2 Model/Data Creation

Creation of Kimberlina 1.2 MW!1 Pre-Injection Logs MW1 Logs after 20 Years of Injection
Synthetic Well logs - T LT T el . ey

Map view with well locations = =

e Syntheticlogs created in
4 hypothetical well
locations

* Density, velocity and
resistivity logs created in
3 monitoring wells at 0O,
1,2,5,10,15and 20
years afterinjectionstart ' ' x(km)

Y (km)

i
3
=
%

* Time lapse CO, saturationlogs created in all
wells at times after injection

e Geophysical logs created by taking high i
frequency content present in real Kimberlina 1
well log and adding to model property values
at well locations. CO, saturation created by
multiplying model CO, values by scaled
porosity logs
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Task 2 Data : Kimberlina 1.2 Model/Data Creation

Low resolution : .
medical CT images High resolution Micro-CT scanner

industrial CT images with core holder
« Core to pore scale characterization underway of Round Mountain Well #1 (3500-3900")

« scCO, saturation tests in micro-CT scanner completed
« Two zones initially tested too low permeability to perform scCO, injection
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Pore-to-Well Scale Efforts

 Four pore to core scale experimental data sets (CT to k,, CT plus acoustic,
NMR measurements of saturation, and thin section/2D image analyses) to
create a robust set of data to upscale to well-scale properties.

 Two methods being evaluated to go from centimeters to meters

* Leveraging uvnique laboratory facilities to capture data that would not
typically be available. ML to understand what features of pore to core
scale properties could be further utilized to constrain and improve models
of saturation evolution in injection reservoirs

o Efforts for site core characterization distilled down to a porosity, permeability, and
maybe some heterogeneity.




Pore Scale Isolation & Core FIow

With Medical CT scanner

« scCO,/brine relative permeability
measurements through the samples that
have had pore scale imaging performed

on sub-cores.
« And porting to core scale simulations
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Pore Scale Isolation & Core FIow

With Medical CT scanner

« scCO,/brine relative permeability
measurements through the samples that
have had pore scale imaging performed
on sub-cores.

« And porting to core scale simulations

Rapid determination of supercritical CO., and brine relative permeability Wy
ey

using an unsteadv-state flow method

Johnathan Moore®"", Paul Holeomb ™", Dustin Crandall %, Seth King*"', Jeong-Hoon Chaed ™",
Sarah Brown®"-, Scott Workman
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Pore-scale Imaging Experimental Sefup PSU Core Imaging Scale

Schematic and photograph of the CT + ultrasonic measurement setup at PSU
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Nuclear Magnetic Resonance Results: Oil-Brine + CO2
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Reservoir Simulation

Reservoir Fluid Analysis

Light fraction Heavy fraction Flow Concept
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Upscaling Pore Features to Well Scale
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Rock Typing to Upscale Flow Properties

PORE LEVEL

. UpsqalinP saturation functions via
Basic Rock Types Rock Type Spatial Distributions multiscale geologic models
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Upscaling Saturation Functions from to Meter Scale

« Connectivity
pore/throat
features, and bulk
properties being
used fo create
near-well models
of representative
flow

index,

e
©
O

(0))

g

@

LL

| | Grid-Block

II Pore-Level

Connectivity Index (Cl) Spatial Distribution

Distance

Short Correl. Length

Pore Network Models

B Intemediate Correl. L.

Long Correl. Length

Petroph. Prop. Library

Porosity — Abs. Pem.

@

Relative Permeabilities




Well - 1o - Field Scale Efforts

» Developed different ML algorithms that used reservoir-simulation-converted
geophysical models to generate the ML training data. After training, the ML

algorithms then employ the seismic and/or multiphysics data to generate

* Estimates of geophysical properties
* Estimates of CO, saturation
* Uncertainty analysis

ML based downscaling methodologies that use well log data were also
investigated to produce higher resolution images than the geophysical
imaging provides




Real-Time 3D Seismic Imaging

GT Conventional FWI ML Velocity Imaging

InversionNet takes 1/10 of sensors, butyields . conventional 3D Imaging takes 1 day (on 25 CPUs) to invert.

. much better 3Dimaging. « Ours takes 5 hours (on 32 GPUs) to train and a few seconds to invert.

Qili Zeng, Shihang Feng, Brendt Wohlberg, and Youzuo Lin, "InversionNet3D: Efficient and Scalable Learning for 3D Full Wawveform Inversion”, Under Review in IEEE Trarsactions on
Geoscience and Remote Sensing , 2021 (arXiv available).
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Physics-Guided Time-lapse CO, Imaging

Spatio-Temporal
Dynamics of

Saturation Imaging y (km) y (km)
0.1 3 6 0.1 3 6
« Physics-driven and deep neural networks are ! !
0.5
incorporated
» 10,000 velocity models are generated based T "
K3 0.5 = 0.5
on baseline Vp model and log data statistics. ~ o
 Temporal saturation dynamics is
estimated via InversionNet.
(] 3.5 0
: . . Y 1 Year 1
InversionNet trained with s
synthesized training set produces
Saturation (Ground Truth) Saturation Estimation

accurate estimation of saturation
and spatio-temporal dynamics.

Yanhua Liu, Shihang Feng, llya Tsvankin, David Alumbaugh, and Youzuo Lin, “Mitigating Data Scarcity for Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion” (Under Review)
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Physics-Guided Time-lapse CO, Imaging

Spatio-Temporal
Dynamics of
Saturation Imaging

« Physics-driven and deep neural networks are

incorporated
» 10,000 velocity models are generated based
on baseline Vp model and log data statistics.
 Temporal saturation dynamics is

estimated via InversionNet.

. ; ) Y 60 Year 60
InversionNet trained with =2t

synthesized training set produces

accurate estimation of saturation Saturation (Ground Truth) Saturation Estimation

and spatio-temporal dynamics.

Yanhua Liu, Shihang Feng, llya Tsvankin, David Alumbaugh, and Youzuo Lin, “Mitigating Data Scarcity for Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion” (Under Review)




Task 2 Well-to-Field Scale Imaging / Visualization
2D Stochastic U-Net Example (LBL Approach)

Kimberlina GCS Model
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Task 2 Well-to-Field Scale Imaging / Visualization
Resolution Enhancement by Supervised Learning (CSM)

Behura & Prasad, CSM X (km)
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PRy U8 DERARINERTIE Note: Testing of a ‘CGAINS’ ML algorithm for downscaling was shown by CSM
researchers not to perform.
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Task 2 Well-to-Field Scale Imaging / Visualization
Resolution Enhancement by Supervised Learning (CSM)

Behura & Prasad, CSM X (km)
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Task 2 Well-to-Field Scale Imaging / Visualization
Resolution Enhancement by Supervised Learning (CSM)

Behura & Prasad, CSM X (km)
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e Well-log resolution result

e Applicable to other attributes

e Apply to any field with wells

e Works with wells of any geometry
e Hi-resolution poro-perm fields
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Task 2 Well-to-Field Scale Imaging / Visualization
Resolution Enhancement by Supervised Learning (CSM)

Behura & Prasad, CSM X (km)
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e Well-log resolution result

e Applicable to other attributes

e Apply to any field with wells

e Works with wells of any geometry
e Hi-resolution poro-perm fields
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Task 2: Real-Time Rock Property Visualization Workflow
Stochastic Neural-Net Workflow

Multiple Simulations of

Initial Staticand Dynamic Multiple realizations of Predicted Reservoir
Geo Models Reservoir Properties (o, Pressure, Sat, Stress etc.

k, etc.) everywhere_in model

(Stochastic)
Geophysical

Multiple Realizations of Geophysical
Properties (Seismic Velocity, Resistivity,
Density, etc.) everywhere in model

Property

|terative . Simulation . i
Stochastic : Fast Reservoir/ SN =,
Reservoir % Modeling - ; -
Simulation | W #a..
»y Petrophys - R =
N Simulations of Predicted HEE AP L= | Multiple
kmaging LRet: Reservoir Pressure, Sat, etc. Relationships Simulations of
A extracted at measurement : Geophysical
Z-Permeability Geophysical Data (Passi
locations/ sensing area Modeling ata (Passive
Pz and/or Active
NETL ABCEQ j ‘ ) Seismic, Gravity,
EERCgRY ophysical [l 3 c Synthetic EM, well logs,
Estimate of PSU SV vl i 4 l d 4; ‘g Training Data etc.)at sensor
Reservoir Props « LBL CcsM » =1 : W locations
(CO2 Saturation) ’
& Uncertainty
= Minimally processed
LANL ML Driven o d Geophysical Data -

LBL Conversion

-

‘ff-‘_ih,ﬁ %3'_ R'?m.dom Sampling f)f
Q_ -

LANL InverS|on Netlmag Training data, multiple

U-Net Creation, ...
ML Driven ‘
Downscaling
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Task 2: Real-Time Rock Property Visualization Workflow
Example of Internal Feedback Loops

Multiple Simulations of

Initial Staticand Dynamic Multiple realizations of Predicted Reservoir (Stochastic)
Geo Models Reservoir Properties (¢, Pressure, Sat, Stress etc. C— Multiple Realizations of Geophysical
k-, etc.) everywheI’VG_ in model E— Properties (Seismic Velocity, Resistivity,

Density, etc.) everywhere in model

Simulation

Iterative :
Stochastic . Fast Reservoir/ - &=,
Reservoir %1 Modeling . : :
Simulation , Wegk #a..
Oy ¥y Petrophys - ) S .
N Simulations of Predicted Roc!< e =, ' Multiple
Imaglng_/ Rel” Reservoir Pressure, Sat, etc. Relationships Simulations of
extracted at measurement . Geophysical
EPermedpitity Geophysical

Data (Passive
and/or Active
Seismic, Gravity,
EM, well logs,
etc.)at sensor
locations

locations/ sensing area B .
E i =3
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Training data, multiple
U-Net Creation, ...
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Questions?
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Thank youl!

dlalumbaugh@lbl.gov
dustin.crandall@netl.doe.gov
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