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AOI 1a - Fault Detection, Characterization, and 

Hazard Assessment.

No field work. Novel method development. Final 

deliverable: a software package for subsurface analysis 

for Gigatonne storage scenarios.



Goals and Objectives for Gigatonne injection
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Methodology

• Develop 9-component (9C) elastic double-beam method for small-scale 

fracture characterization (self validating)

• Develop large-scale fault detection method

• Synthesis: 

– fractures/faults in sedimentary layers and basement; 

– Stress 

– Estimating earthquake hazards 

– Estimating fluid pathways to basement faults

• Field data test: 9C seismic dataset from Wolf Springs in Central Montana
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Objectives budget periods (BP)

• BP 1. Fault detection and fracture characterization in the basement using 

synthetic 9C surface seismic data (Year-1)

• BP 2. Fault detection and fracture characterization in the basement using field

9C surface seismic data (Year-2)

• BP 3. Determination of fault stress state and fault activation potential (Year-3)
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Task/Subtask Breakdown
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Task 2.0 - Fault detection and fracture characterization in the basement using synthetic 9C surface seismic data

This task will be in Year-1 which is the budget period 1. The work will focus on synthetic dataset based on a model with

dimensions similar to the Wolf Springs field data.

• Subtask 2.1 – (UH/LANL/Vecta) Model building based on central Montana (M1-M3): Build a 3D elastic model using the Wolf

Springs field geometry.

• Subtask 2.2 – (UH) Multicomponent synthetic seismic data modeling (M4-M6): Using the model and the locations of the

sources and receivers in the field data, UH will run their elastic finite-difference code to generate the synthetic datasets. The

computation will be done on PI’s group cluster.

• Subtask 2.3 – (LANL) Migration imaging (M7-M9): LANL will conduct P-P, P-S, S-P, and S-S imaging on the synthetic

dataset.

• Subtask 2.4 – (LANL) Machine learning fault detection (M10-M12): LANL will detect faults on P-P, P-S, S-P, and S-S images

of the synthetic dataset.

• Subtask 2.5 – (UH) Fracture characterization using elastic double beam (M10-M12)



Roadmap  
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Why another method for fracture 

characterization?

• Can seismic migration see the small-scale fractures? 

• No.
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Fractures: vertical; 9m height; 

fracture compliance 1e-10 m/Pa

Finite difference modeling: Coates and Schoenberg (1995)

Motivational example: fractures are hard to see
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baseline image w/o fractures

image w/ fractures

Hard to see fractures 

in traditional seismic 

migrated images



How does the seismic double-beam 

method characterize small-scale 

fractures
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From point sources to localized wave packet
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From point sources to localized wave packet
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From point sources to localized wave packet
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From point sources to localized wave packet

18



From point sources to localized wave packet
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From point sources to localized wave packet
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From point sources to localized wave packet
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Directional wave

incidence

interference pattern

(observation)

Frac parameter inversion

Fractured reservoir

• Fracture orientation

• Density

• Compliance → fluid permeability (Petrovitch et al., 2013)

Interference pattern → fractures
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Field seismic data (9C) in Montana
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Vertical vibreseis
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Fractures and Basement faults
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Build the synthetic elastic model from the 

field data 
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P-wave velocity model from the field Vecta data
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Shear-wave velocity model from the field Vecta data
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Density model from the field Vecta data
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Synthetic Vp model with 

: a normal fault

: vertical artificial fracture sets 

: small fractures extracted from field data image 

Fractures extracted 

from the field data 

image

vertical artificial fractures 

at different depths 

Normal fault

Z: 1200-1700 
m

Z: 1000-1200 
m

Z: 1600-1750 
m
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vertical artificial fractures

Z: 1200-1700 
m

Z: 1000-1200 m
Two coexisting sets

Z: 1600-1750 
m

Map view fractures
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Source

Receiver

Sources: 

X: 2800:125:6550 m

Y: 2100:125:4850 m

Total: 31*23=713

Receivers: 

X: 2800:35:6615 m

Y: 2100:35:4900 m

Total: 110*81=8910

Both Source and 

receivers are at 

surface 

Acquisition geometry
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Modeled common-shot gathers at one 

location with different types of source. 
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Source

Two receiver 

lines

Source wavelet: 20 Hz Ricker
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Explosive 

source

Receivers along 

X

Receivers along 

Y
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Single 

force: 

X 

Receivers along 

X

Receivers along 

Y
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Single 

force: 

Y 

Receivers along 

X

Receivers along 

Y

37



Single 

force: 

Z

Receivers along 

X

Receivers along 

Y
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Fracture detection results 

using  

The Seismic Double-Beam method
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Top view of detected fractures

At three depths (1100 m, 

1400 m and 1650 m) 

from frequencies 15 Hz, 

20 Hz, 30 Hz and 40 Hz
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3D view of detected fractures 
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Example of DB images
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Depth 1100 m: Has fractures

15 

Hz

20 

Hz

30 

Hz
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Depth 1400 m: Has fractures

15 

Hz

20 

Hz

30 

Hz
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Depth 1400 m: Has fractures

15 

Hz

20 

Hz

30 

Hz
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Depth 1650 m: Has fractures

20 

Hz

30 

Hz

40 

Hz
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Depth 1100 m: No fracture

No 

consisten

t focused 

“bright 

spot”

15 

Hz

20 

Hz

30 

Hz
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Depth 1400 m: No fracture

15 

Hz

20 

Hz

30 

Hz
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Depth 1400 m: No fracture

15 

Hz

20 

Hz

30 

Hz
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Next steps: discrete fracture network using 

Machine learning
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Input 

layer 
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Output 

layer 

Hidden 

layer 1

Hidden 

layer 2

Pixel 

number of 

DB image

Pixel 

number of 

fracture 

modelFully 

conne

cted

The architecture of our 

fully-connected neural 

network including two 

hidden layers.
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Elastic double-beam 

neural network 

(DBNN) machine 

learning 
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Large-scale faults detected using LANL’s new NRU

Nested Residual U-shaped convolutional neural network (NRU) 



Summary

• Year-1 focused on synthetic model and data tests 

• UH, LANL, and Vecta Oil and Gas ltd. worked together and built a 3d seismic model: Vp, Vs, 

density and spatially varying fracture networks including conjugate fracture sets 

• We modeled 3d 9-c shot gathers 

• We applied the double-beam method on the modeled datasets and found 

– If there are fractures, DB can invert for the true fractures 

– If there is on fracture in the model, DB reports ‘no fracture’

– Different frequencies give consistent results → DB method is self verifying 

• In the Gigaton CO2 injection scenario, our methods could be extremely useful in providing 

information: permeable fluid flow pathways, stress state, and earthquake hazards 
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