Seismic elastic double-beam characterization of faults and fractures for CO_2 storage site selection

Project Number: DE-FE0032063

Project start date: July 1, 2021

Yingcai Zheng

University of Houston

U.S. Department of Energy National Energy Technology Laboratory 2022 Project Review Meeting, Pittsburgh 08/16/2020 11am

Teams

- University of Houston
 - Yingcai Zheng (PI)
 - Jake Parsons (graduate student)
 - Sharmila Appini (graduate student)
 - Yuesu Jin (graduate student)
 - Hao Hu (postdoc)
- Los Alamos National Laboratory
 - Lianjie Huang (Co-PI)
 - David Li (graduate research assistant)
 - Neala Creasy (postdoc)
- Vecta Oil and Gas, Ltd.
 - Bryan DeVault (President/CEO; Co-PI)
 - Gulia Popov

UNIVERSITY of HOUSTON

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

Department of Energy (DOE) Office of Fossil Energy (FE)

EMERGING CO₂ STORAGE TECHNOLOGIES: OPTIMIZING PERFORMANCE THROUGH MINIMIZATION OF SEISMICITY RISKS AND MONITORING CAPROCK INTEGRITY Funding Opportunity Announcement (FOA) Number: DE-FOA-0002401 Announcement Type: Amendment 1¹ CFDA Number: 81.089 EMERGING CO₂ STORAGE TECHNOLOGIES: OPTIMIZING PERFORMANCE THROUGH MINIMIZATION OF SEISMICITY RISKS AND MONITORING

CAPROCK INTEGRITY

Funding Opportunity Announcement (FOA) Number: DE-FOA-0002401

AOI 1a - Fault Detection, Characterization, and Hazard Assessment.

No field work. Novel method development. Final deliverable: a software package for subsurface analysis for Gigatonne storage scenarios.

Goals and Objectives for Gigatonne injection

Methodology

- Develop 9-component (9C) elastic double-beam method for small-scale fracture characterization (self validating)
- Develop large-scale fault detection method
- Synthesis:
 - fractures/faults in sedimentary layers and basement;
 - Stress
 - Estimating earthquake hazards
 - Estimating fluid pathways to basement faults
- Field data test: 9C seismic dataset from Wolf Springs in Central Montana

Objectives budget periods (BP)

- <u>BP 1.</u> Fault detection and fracture characterization in the basement using synthetic 9C surface seismic data (Year-1)
- <u>BP 2.</u> Fault detection and fracture characterization in the basement using <u>field</u> 9C surface seismic data (Year-2)
- **<u>BP 3.</u>** Determination of fault stress state and fault activation potential (Year-3)

Task/Subtask Breakdown

Task 2.0 - Fault detection and fracture characterization in the basement using synthetic 9C surface seismic data

This task will be in Year-1 which is the budget period 1. The work will focus on synthetic dataset based on a model with dimensions similar to the Wolf Springs field data.

- <u>Subtask 2.1</u> (UH/LANL/Vecta) Model building based on central Montana (M1-M3): Build a 3D elastic model using the Wolf Springs field geometry.
- <u>Subtask 2.2</u> (UH) Multicomponent synthetic seismic data modeling (M4-M6): Using the model and the locations of the sources and receivers in the field data, UH will run their elastic finite-difference code to generate the synthetic datasets. The computation will be done on PI's group cluster.
- <u>Subtask 2.3</u> (LANL) Migration imaging (M7-M9): LANL will conduct P-P, P-S, S-P, and S-S imaging on the synthetic dataset.
- <u>Subtask 2.4</u> (LANL) Machine learning fault detection (M10-M12): LANL will detect faults on P-P, P-S, S-P, and S-S images of the synthetic dataset.

Subtask 2.5 – JH) Fracture characterization using elastic double beam (M10-M12)

Roadmap

Why another method for fracture characterization?

• Can seismic migration see the small-scale fractures?

• No.

Motivational example: fractures are hard to see

Finite difference modeling: Coates and Schoenberg (1995)

Hard to see fractures in traditional seismic migrated images

How does the seismic double-beam method characterize small-scale fractures

Interference pattern \rightarrow fractures

Fractured reservoir

- Fracture orientation
- Density
- Compliance \rightarrow fluid permeability (Petrovitch et al., 2013)

Field seismic data (9C) in Montana

Vertical vibreseis

Fractures and Basement faults

Build the synthetic elastic model from the field data

P-wave velocity model from the field Vecta data

Shear-wave velocity model from the field Vecta data

Density model from the field Vecta data

Acquisition geometry

★Source ▼Receiver

Sources: X: 2800:125:6550 m Y: 2100:125:4850 m Total: 31*23=**713**

Receivers: X: 2800:35:6615 m Y: 2100:35:4900 m Total: 110*81**=8910**

Both Source and receivers are at surface

Modeled common-shot gathers at one location with different types of source.

Source wavelet: 20 Hz Ricker 34

Explosive source

Single force: X

Single force: Y

Single force: Z

Fracture detection results using The Seismic Double-Beam method

Top view of detected fractures

At three depths (1100 m, 1400 m and 1650 m) from frequencies 15 Hz, 20 Hz, 30 Hz and 40 Hz

3D view of detected fractures

Example of DB images

Depth 1100 m: Has fractures

Depth 1400 m: Has fractures

Depth 1400 m: Has fractures

Depth 1650 m: Has fractures

Depth 1100 m: No fracture

Depth 1400 m: No fracture

Depth 1400 m: No fracture

Next steps: discrete fracture network using Machine learning

Elastic double-beam neural network (DBNN) machine learning

The architecture of our fully-connected neural network including two hidden layers.

Large-scale faults detected using LANL's new NRU

Nested Residual U-shaped convolutional neural network (NRU)

Summary

- Year-1 focused on synthetic model and data tests
- UH, LANL, and Vecta Oil and Gas Itd. worked together and built a 3d seismic model: Vp, Vs, density and spatially varying fracture networks including conjugate fracture sets
- We modeled 3d 9-c shot gathers
- We applied the double-beam method on the modeled datasets and found
 - If there are fractures, DB can invert for the true fractures
 - If there is on fracture in the model, DB reports 'no fracture'
 - Different frequencies give consistent results \rightarrow DB method is self verifying
- In the Gigaton CO2 injection scenario, our methods could be extremely useful in providing information: permeable fluid flow pathways, stress state, and earthquake hazards

Acknowledgments

- The work is funded by DOE with funding number DE-FE0032063
- LANL is operated by Triad National Security, LLC, for the U.S. DOE National Nuclear Security Administration (NNSA) under Contract No. 89233218CNA000001. This research used computing resources provided by the LANL Institutional Computing Program supported by the U.S. DOE NNSA under Contract No. 89233218CNA000001.
- We also used computing facilities provided by the UHX frac group at the University of Houston.
- Vecta Oil and Gas Itd. provided relevant field information