The Role of Chemical Alteration in Arkosic Reservoirs FEW0271

Megan M. Smith Lawrence Livermore National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Project Overview, 1/2

Does chemical alteration (negatively) impact CO_2 storage capacity in the Lower Mt. Simon sandstone?

This formation has attractive porosity and permeability, as well as abundant clay and feldspar mineralogy. Chemical alteration via CO_2 exposure is likely to enhance secondary clay formation, which may alter these injection properties.

Project objective: To quantify the role of chemical alteration on CO_2 injection and storage capacity in arkosic sandstone reservoirs, using

- detailed characterization of reservoir samples
- core-scale flow experiments at relevant (P, T, pCO_2) conditions
- reactive transport modeling and incorporation into reservoir simulator

Project Overview, 2/2

- Funding awarded August 2020 (\$400k/y)
 - 3-yr project (August 2023)
 - pandemic, lab, hiring delays
- Project Participants
 - LLNL: experimental geoscientists; reactive transport, coupled chemomechanical modelers; reservoir code developers
 - Illinois State Geological Survey: Hongbo Shao, Steve Whittaker

Gabriela Davila

Jaisree lyer

Yue Hao

Matteo Cusini

Technology Background, 1/3

Chemical reactions among supercritical CO₂, brine, and the high surface area feldspars and clay coatings found in the Lower Mt. Simon pose an **important but poorly understood threat to CO₂ injection and long-term storage capacity.**

Completion of the work will yield a reactive transport model of this important reservoir and answer the question: does chemical alteration negatively impact CO₂ storage capacity in the Lower Mt. Simon formation?

Whittaker, ISGS

Davila et al., 2020

Technology Background, 2/3

This project meets the Carbon Storage Program's goals to **address methods and tools that enable storage efficiency optimization**:

We will provide a process-based model accounting for observed changes to porosity and permeability, constrained by experiments on more common sandstone reservoir systems that experience a wider range of geochemical reaction (e.g., mineral dissolution, precipitation, and *in situ* alteration) during rock-scCO₂-brine interaction.

Technology Background, 3/3

This work builds heavily on techniques and workflows developed in previously funded DOE Carbon Storage research on carbonate reservoirs.

Upscaling core (cm-scale) observations to the meter-scale allowed us to examine scale dependence of key transport parameters and showed that we can correct for model resolution:

With such scaling, we can use much faster-running, coarser models and still be predictive. We will apply this methodology to derive relationships 6 appropriate for sandstone reservoirs.

Technical Approach/Project Scope

Subtask 1.1: Core-flood experiments on Lower Mt. Simon samples

8(+) experiments, varying residence time/flowrate, both single-phase CO₂-saturated brine flow as well as multi-phase scCO₂ alternating flow

Subtask 1.2: Measurement of chemical and mechanical alteration

solution (major/trace elements, CEC) and solid (SEM, BET, NMR) chemistry analyses, pressure/permeability monitoring, non-destructive synchrotron-based imaging (XRCT) coupled with digital image analysis

Subtask 1.3: Build reactive transport model

preliminary geochemical and transport modeling, calibration of model against experimental results, investigation of kinetic reaction/surface area and porosity-permeability correlations, coupling of geochemical model with existing reservoir simulator

Lower Mt. Simon arkosic samples

6937 feet depth (2114 meters)

mm-scale horizontal subcore, enhanced X-ray CT analysis

15-mm diameter *vertical* subcore, 65mm length, compare K_H/K_v permeability

rough-cuts from waste sections, thin/thick sectioning for microscopy, microprobe, nanoindentation, etc.

Preliminary model for reactivity

Conceptual Model

3-D cylindrical core converted to 1-D symmetry

 $C_i(out)$ $C_i(in)$ 40 nodes inlet outlet = Ci(in) + Ci(diss) - Ci(pp)**Condition Input** temperature 50.0 HCO3- 6.185e-1 Characterization data from: pН charge Freiburg et al., 2016; Davila et al., 2020; Na+ 2.000e+0Davila, current results CI-2.0025e+0

Initial Conditions

T = 50 °C P = 200 bar $Q_{fast} = 0.5 \text{ mL/min}$ $Q_{med} = 0.1 \text{ mL/min}$ $Q_{low} = 0.05 \text{ mL/min}$ $\phi = 0.179 \pm 0.04$ $k_{initial} = \text{ allowed to vary}$

Transport Parameters $D_{eff} = \phi^m D_o$ $m = \sim 2.0$ for sandstone rocks *initial* $D_{eff} = 3 \times 10^{-13} \text{ m}^2 \text{ s}^{-1}$

solution pH and porosity, preliminary results

Redox-sensitive tracer metals may also be useful to track extent of reaction; e.g., Hongbo et al., 2020

Additional characterization used to pinpoint key processes

- Changes to pore space/mineral distribution, grain displacement, initial sample heterogeneity – X-ray computed tomography
- Mineral association/proximity to pore space scanning electron microscopy, microphotography
- Clay identification X-Ray diffraction, long-term reaction, TEM
- Surface area BET analysis, solid-state nuclear magnetic resonance
 Sanders et al., 2010, Measurement of reactive clay surface area using solid-state
 NMR of a probe molecule
- CO₂ and clay ion exchange effects dialysis experiments Sakuma et al., 2022, Friction in clay-bearing faults increases with the ionic radius of interlayer cations

Single-phase experiments underway

 50° C, 56 bar pCO₂, 248 bar confining pressure, single-phase flow, 3-30 days

5+ experiments before changing to multi-phase flow

Porting reactive transport simulation capabilities to a new workflow

The original workflow utilized the reactive transport code, NUFT, which had been previously used for bruteforce, high-resolution, meterscale simulations of reactive transport in carbonate storage formation samples.

We can now leverage new developments within LLNL's multi-scale reservoir simulator, GEOSX, linking the geochemical solver EQ3/6's thermodynamic database with a flexible user input interface. This allows us to simulate flow, multi-species transport, and equilibrium aqueous speciation and reactions.

Coupling flow and reactive transport

kinetic (mineral) reactions

1-D validation of workflow against NUFT output

• This exercise repeated for a range of kinetic reaction rates for carbonate as well as arkosic scenarios.

2-D simulations: heterogenous sample, simplified chemistry

- 2.000e-13

- 2.000e-14

- 2.000e-15

2D Simulation of Mineral Dissolution

initial permeability

- Extend to 3-D volume
- Refine model permeability domain with sample characterization statistics
- Test variable porositypermeability forms (e.g., Sabo and Beckingham et al., 2021)
- Evaluate incongruent K-feldspar, clay kinetic reactions

Accomplishments/Value

Key Accomplishments/Deliverables

2020: Institutional upgrades to experimental equipment; posted postdoctoral position

2021: Down-selected from 64 candidates and hired staff; planning with ISGS and received core; brought technician on-site for sample prep and characterization; assessed kinetic data for clay formation, refined geochemical models; evaluated transport codes

<u>2022</u>: Continued labspace upgrade; preliminary geochemical modeling for optimal chemical sampling; solid-phase characterization; single-phase core-flood experiments; submitted results to AGU Fall Meeting 2022; "road-testing" GEOSX with geochemical model

Value Delivered

- Leveraged institutional investments in laboratory facilities for upcoming work
- Hired an experienced scientist; preliminary modeling informed needed sampling procedures; gained statistics on sample variability; "shook-down" scCO₂ flow system
- Preliminary modeling should lower uncertainty in sample processing; first manuscript submission by end of calendar year; investment in simulation workflow will lower burden of upscaled simulations

A reactive transport model that describes the impact of CO_2 -driven chemical alteration on feldspar-rich sandstone formations:

The CarbonSAFE program identified the Lower Mt. Simon sandstone for large-scale GCS based on exceptional porosity and permeability. CO_2 injection perturbs its chemical equilibrium, forming high-surface area clays, which may clog pores or change reservoir properties. We will deliver a reactive transport model of the formation that captures these processes.

The Role of Chemical Alteration in Arkosic Reservoirs

Megan M. Smith smith447@llnl.gov

Lawrence Livermore National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Progress

Milestone 1: Single-phase experiments ongoing: initial modeling predicts net porosity increase yet permeability decreases noted in all cases. Suite of experiments will be post-characterized and analyzed for presentation at AGU 2022. "Wet" sc CO_2 experiments begin Dec 2022.

Milestone 2: Early progress made here, although note that final model calibration requires complete experimental datasets.