Advanced Data Extraction to Support a Living Database

Ę

Michael Sabbatino

NETL Support Contractor Research Innovation Center

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author Information

Michael Sabbatino^{1,2}, Paige Morkner^{1,2}, Jennifer Bauer¹, Kelly Rose¹

¹ National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR, 97321 USA
² NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR, 97321, USA
³ NETL Support Contractor, 3610 Collins Ferry Rd., Morgantown, WV, 26505, USA

Research is Data-driven

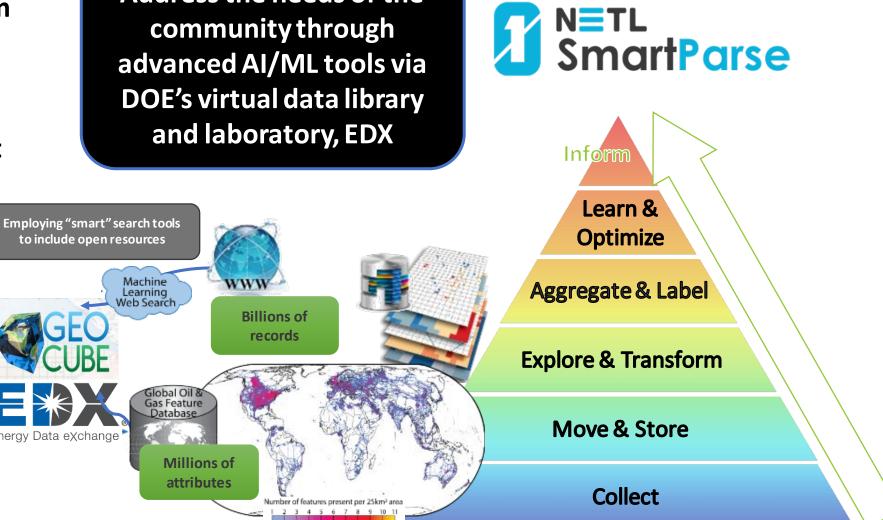
- Millions of dollars of research and data are available from carbon storage efforts
- How can we preserve and efficiently access those resources to drive the next generation of R&D?

Oil, Gas, Geothermal & Carbon Storage Data & Resources

Millions of

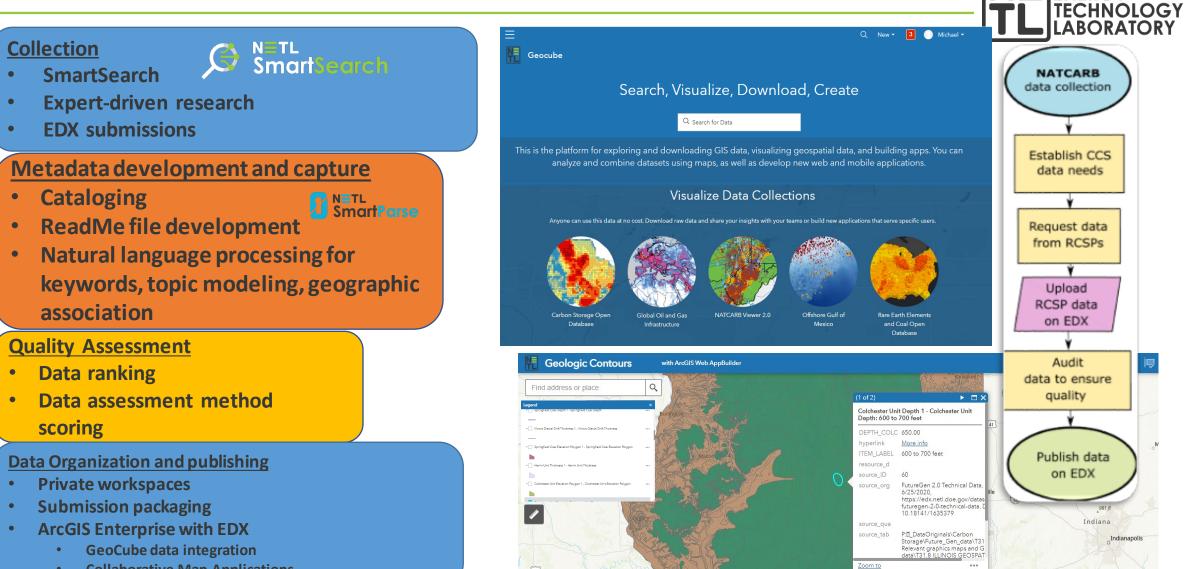
attributes

Address the needs of the community through advanced AI/ML tools via **DOE's virtual data library** and laboratory, EDX


to include open resources

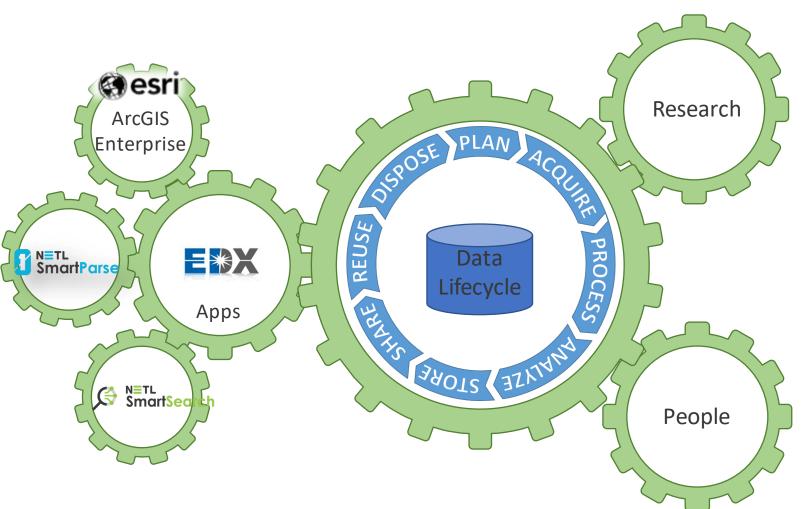
Energy Data exchange

Machine


Learning Web Search

Offehora R&I

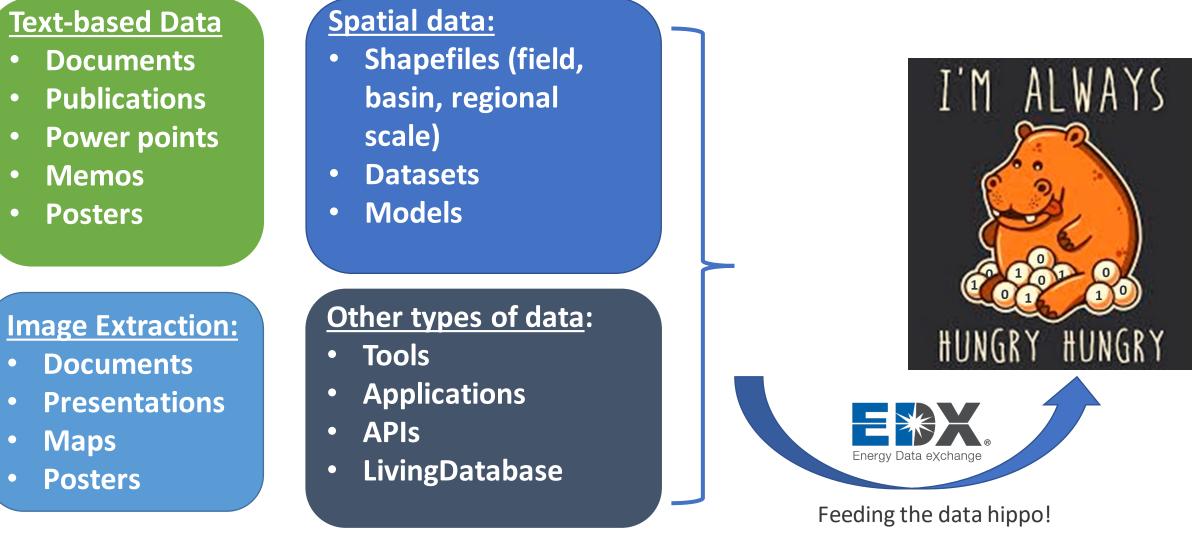
Carbon Storage Data Lifecycle


Collaborative Map Applications

ΝΔΤΙΟΝΔΙ

Expanding Integrations for a Living Database

- Expanded to Utilize ArcEnterprise GIS data management System hosted on AWS servers
 - Store/Share Geospatial Data
 - Host New Geocube Web Application
 - Custom Interactive Map Applications
- Store and Share Data in a Structured Secure Database Environment
 - Reduce Redundant Acquisition
 - Direct Data Access (not file-based storage)
 - Consistent Data with Staff Turnover
 - Enhanced Collaboration
- Curation of data and knowledge
- Allows Direct Analysis from Database
- Available On Research network and Watt ML Cluster


NATIONAL

RG

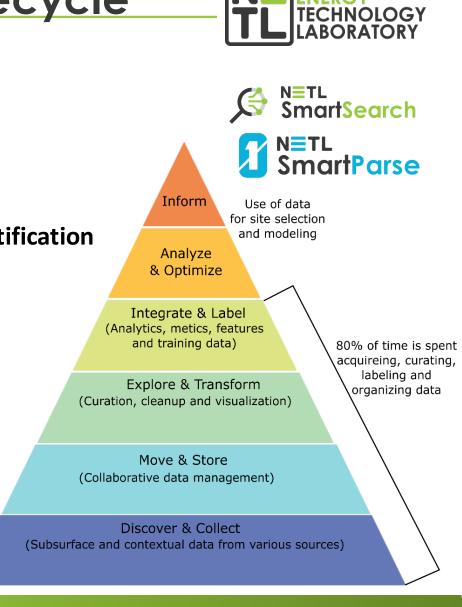
HNOLOGY

Types of Carbon Storage Data

Advanced AI/ML Tools for CS Data Lifecycle

Challenge: Continue increasing available data while enhancing metadata, searchability, and curation. **Solutions:**

- Natural Language Processing:
 - text-based resource classification, organization, keyword identification
 - metadata extraction and preservation
 - geographic association (for searchability)


Image Classification and Text Extraction

- Identify images from papers, posters, and documents
- Classify images and extract text
- Extract image metadata

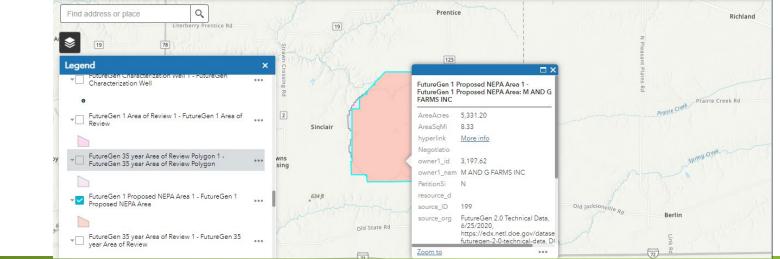
• ArcGIS Enterprise on AWS:

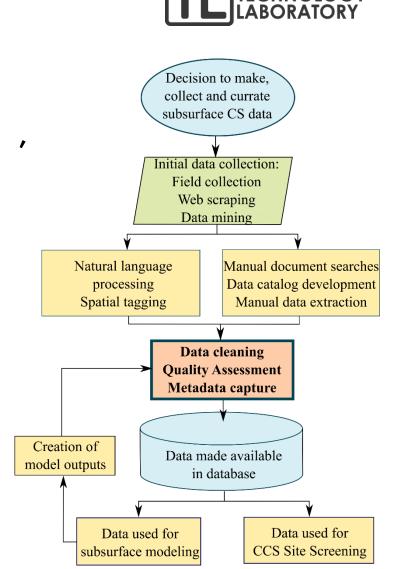
- Geographic database development (Geocube)
- Interactive map creation and collaboration
- Integration with EDX

ΔΤΙΟΝΔΙ

Data Cleaning for ML, AI and Spatial Analysis

Identify data to be collected

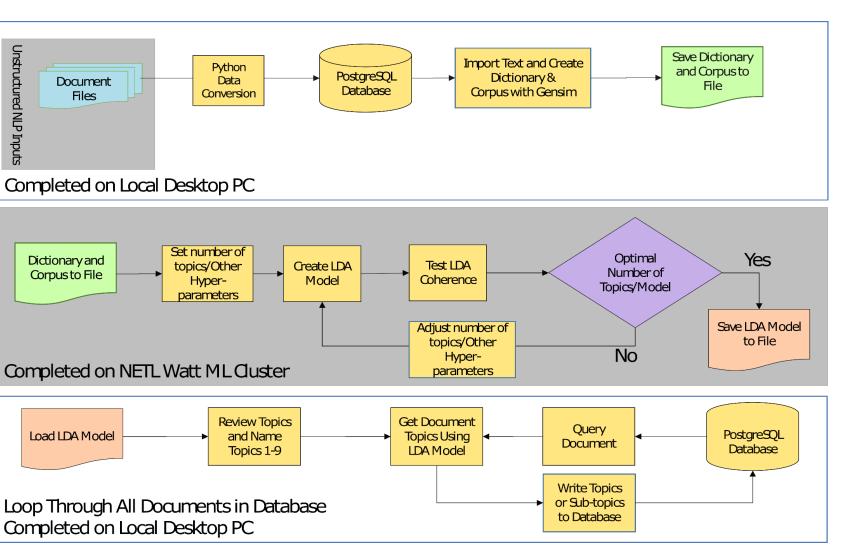

CCS Projects and Field Data


U.S. DEPARTMENT OF

Includes:

- Data, Papers, Catalogs of Data, Online Sources and Metadata
- Data collected and processed using Python tools to move, quantify and label data

with ArcGIS Web AppBuilder


🚯 🖶 🔍

10 10

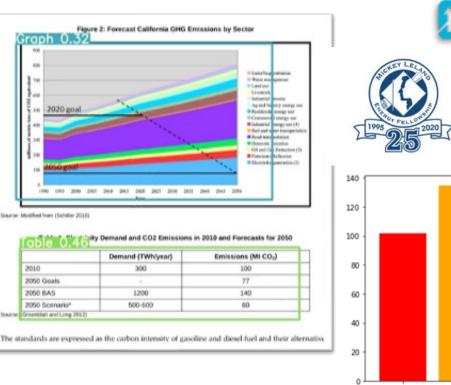
Natural Language Processing (NLP) Unsupervised ML for Document Classification

- Latent Dirichlet allocation (LDA) model based on corpus of textbased documents
- Topic names assigned by subjectmatter experts
- Each document is classified by % of each topic it's associated with
- Each document has 50+ keywords identified and can be associated with metadata on EDX
- Parse geographic location to associate with each document – when possible

NETL

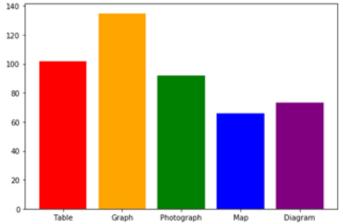
SmartParse

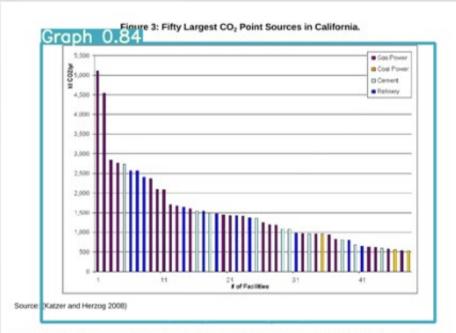



11

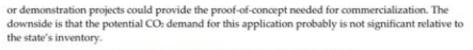
Machine Learning Image Data Extraction

 Object Detection Model Development Process


- Use transfer learning to train object detection model for specific image and data types
- Detect Graphs, Diagrams, Photos, Maps, and Tables
- Image Labeling and process Developed with help from Mickey Leland Energy Fellowship

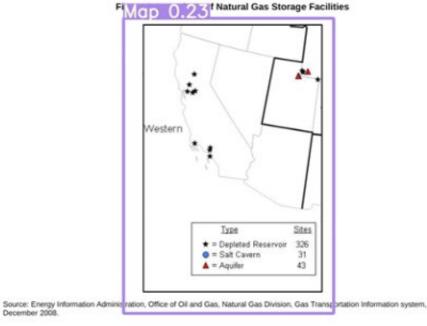


Images and Tables Targeted for Data for Extraction



Machine Learning Data Extraction

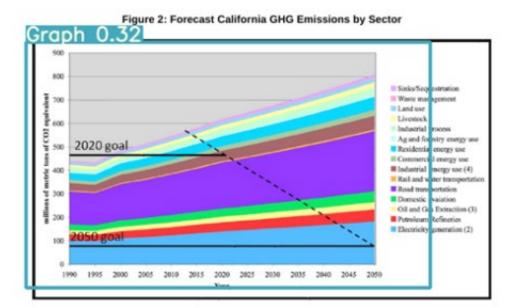
Utilize Object Identification ML Models to Extract Additional Data


Some studies have suggested that application of CCUS to biomass or biofuel plants may be a valuable option for the state to achieve its 2050 emissions reduction goal (Greenblatt and Long 2012). Only about 2 percent of the state's electricity (600 MW) is generated from 33 small biomass power plants. Approximately 196 million gallons of biofuels are produced in-state by ethanol and biodiesel facilities; the demand estimated by the California Energy Commission is approximately 1.6 billion gallons per year. California's Low Carbon Fuel Standard includes eligibility of CCS as a measure to lower the carbon intensity of fuel stocks. Emissions from these sources are considerably less individually and in aggregate than from coal and NGCC power plants or petroleum refineries, but these sources are free from cap-and-trade emission constraints and would produce net-negative emissions if outfitted with CCUS. These negative emissions could be used as offsets for fossil generation or fuels if allowed by policy. The California 2012 Bioenergy Action Plan recognizes the need to analyze and mitigate potential problems with particle air emissions that have created challenges for biomass plants, such as the Klamath Biomass Plant in southern Oregon. These and other challenges facing biofuel development.

ΝΔΤΙΟΝΔΙ

TECHNOLOGY

LABORATORY



Similar issues arise in use of CO: as a cushion gas for natural gas storage. Demand for cushion gas is seasonal. California has 12 underground natural gas storage sites (Figure 8) with a working capacity of 266 billion cubic feet (BCf) and a daily withdrawal capacity of 6875 million cubic feet (MMcf)

Machine Learning Data Extraction

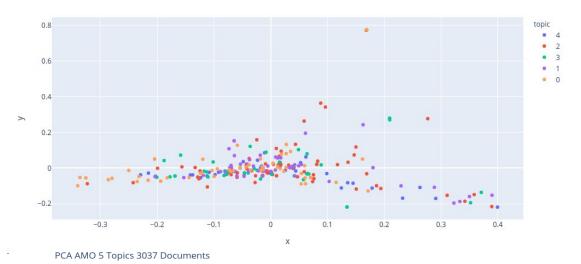
Utilize Object Identification ML Models to Extract Additional Data 🛄

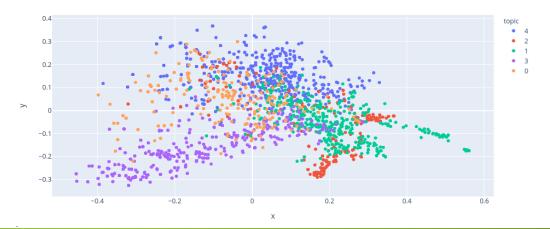
Source: Modified from (Schiller 2010)

	Demand (TWh/year)	Emissions (Mt CO ₂)
2010	300	100
2050 Goals		77
2050 BAS	1200	140
2050 Scenario*	500-600	60

NATIONAL ENERGY TECHNOLOGY

LABORATORY




NLP and Machine learning to Classify and Text and Images

- 10 topic, 5 topic and variable
- PCA Analysis
- Keywords and Custom Stop Word List

pic Description					
oic Number	0	1		-	
0			learn	high	high
-	learn	research	high	science	material
2	material	science	science	grid	science
3	high	wildfire	material	material	learn
4	research	high	infrastructure	learn	power
5	science	grid	research	research	uncertainty
6	event	learn	power	device	image
7	structure	infrastructure	human	experiment	research
8	infrastructure	source	experiment	optimization	graph
9	uncertainty	event	real	event	source
10	optimization	power	optimization	power	optimization
11	level	human	surrogate	infrastructure	facility
12	experiment	management	edge	image	field
13	power	climate	grid	quantum	experimental
14	predict	real	experimental	level	ray
15	discovery	material	storage	resolution	edge
16	generation	image	capability	structure	quantum
17	capability	task	dynamic	architecture	hardware
18	grid	optimization	efficient	current	structure
19	image	structure	attack	potential	available
20	experimental	risk	building	discovery	experiment
21	extreme	dynamic	integrate	intelligence	hpc
22	fault	edge	fidelity	automate	human
23	nuclear	discovery	extreme	workflow	imaging
24	source	transfer	facility	resource	level
25	code	inverse	different	field	discovery
26	representation	predict	failure	real	processing
27	task	increase	inference	failure	current
28	distribution	hpc	generation	predict	water
29	resolution	ray	code	figure	user
30	property	support	future	extreme	synthesis
31	health	fire	structure	increase	nuclear
32	different	weather	discovery	synthesis	real
22	failure	future	pp .	hpc	generate

NLP and Machine learning to Classify and Text and Images

- Data Input Zipped Papers, Spreadsheets, and Images
- Process with NLP (Gensim) to Create topic model
- Convert PDF to JPG for preprocessing
- Used trained Yolo model using transfer learning
- Extracted images from papers and classify

s > Paper Analysis > Day 3 - Jan 12		~ ē	🔎 Search Day 3 - Jar	
Name ^	Date modified	Туре		Size
🧿 Aditya Sundararajan_Adaptive Machin	12/14/2021 12:25 PM	Chrome H	TML Do	110 KB
Al_DOE_Workshop_Day 3.xlsx	1/4/2022 12:51 PM	Microsoft	Excel W	65 KB
Ondrew Delorey_Advanced Nonlinear	12/14/2021 12:25 PM	Chrome H	TML Do	5,427 KB
Angel Yanguas_Accelerating the Man	12/14/2021 12:25 PM	Chrome H	TML Do	460 KB
O Athi Varuttamaseni_Al for Supporting	12/14/2021 12:25 PM	Chrome H	TML Do	131 KB
Bin Hu_Using Deep Learning to Guide	12/14/2021 12:25 PM	Microsoft	Word D	23 KB
Ø Brendan Hoover_Knowledge and Data	12/14/2021 12:25 PM	Chrome H	TML Do	134 KB
🧿 Chad Rowan_Data Virtualization and	12/14/2021 12:25 PM	Chrome H	TML Do	105 KB
Cheng Wang_Physics-Informed Deep	12/14/2021 9:55 AM	Chrome H	TML Do	140 KB
Christoper Johnson_Deep Learning To	12/14/2021 12:25 PM	Chrome H	TML Do	154 KB
😰 Copy of Al_DOE_Workshop_Day 3 - De	12/21/2021 11:01 AM	Microsoft	Excel W	42 KB
🧿 Copy of Rao Kotamarthi_Kotamarthi	12/6/2021 11:21 AM	Chrome H	TML Do	94 KB
Craig Rieger_Al Challenges for Control	12/14/2021 12:25 PM	Chrome H	TML Do	209 KB
🧿 David Hughes_Machine Learning on t	12/14/2021 12:25 PM	Chrome H	TML Do	269 KB
Ouane Verner_Analyzing the Impact of	12/14/2021 12:25 PM	Chrome H	TML Do	199 KB
🧿 Feng Qiu_Using Machine Learning_Art	12/14/2021 12:25 PM	Chrome H	TML Do	91 KB
🗢 e la seconda e la compañía de la seconda de	10/11/2024 10:25 814	~		0.0100

NLP and Machine learning to Classify and Text and Images

- Data Input Zipped Papers, Spreadsheets, and Images
- Process with NLP (Gensim) to Create topic model
- Convert PDF to JPG for preprocessing
- Used trained Yolo model using transfer learning
- Extracted images from papers and classify

Data Virtualization and Management for Energy R&D

ROWAN, Chad¹

ROSE, Kelly², BAUER, Jennifer,

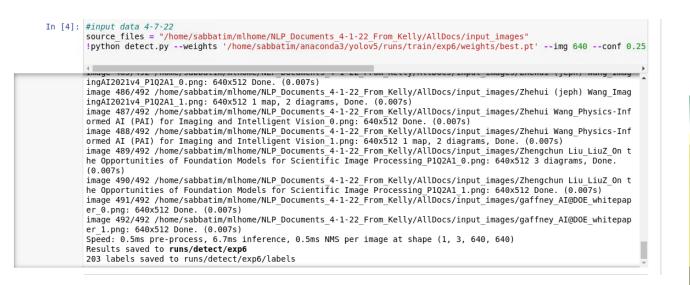
BAKER, Vic, JONES, TJ, MCFARLAND, Daniel

- Maximus, LLC, National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507-0880
- Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507-0880
- 3. Matric Innovates, 3610 Collins Ferry Road, Morgantown, WV 26507-0880

Curation and access to federally funded research products is key to support the current data revolution, FAIR data practices, and ever-changing landscape of artificial intelligence and machine learning (AI/ML) techniques across the U.S. Department of Energy (DOE). In 2011, the DOE National Energy Technology Laboratory (NETL) began development and maintenance of the Energy Data eXchange (EDX) to address the needs of data management while building the functionality needed to support a virtual laboratory. The motivation of this platform was to address the need for rapid response of data intensive challenges including human/natural disasters and fundamental research.

EDX has been leveraged significantly by the DOE Office of Fossil Energy and Carbon Management's geospatial and geoscience programs for carbon storage, rare earth elements, unconventional oil and natural gas, and others. It provides users with an online collection of data, capabilities, and resources that advance ongoing research while maintaining the IT and

NLP and Machine learning to Classify and Text and Images


- Data Input Zipped Papers, Spreadsheets, and Images
- Process with NLP (Gensim) to Create topic model
- Convert PDF to JPG for preprocessing
- Used trained Yolo model using transfer learning
- Extracted images from papers and classify

Α	В	c	D	E	F
ID 1	10 Topic Classification	Doc Name	Doc Text	Metadata	Clean Text
9	0	Anirudh SubramanγamUsing AI With Physics To Prevent Rare And High Impact Cascading Blackouts.pdf	Using AI with physics to prevent rare	{'Author': 'Satkauskas, Ignas', 'Content	-Tr ['prevent', 'rare', 'high', 'cascade', 'blac
87	0	Aric Hagberg_hagberg-aric-AIMLforreliableappliedmathematical_P1Q2A1.pdf	Microsoft Word - DOE white paper	{'Content-Type': 'application/pdf', 'Cre	at ['reliable', 'applied', 'mathematical', 'd
29	1	Rodrigo Duran_Unsupervised Neural Networks Lead to Novel Metocean Insights.pdf	Unsupervised Neural Networks lead to	{'Author': 'Rodrigo Duran', 'Content-Ty	pe ['unsupervised', 'metocean', 'insight', '
30	1	Vitaliy Gyrya_GyryaV_SynergyBetweenMachineLearningAndNumericalMethodsPultilevelPrinciples_P1Q2A1.pdf	Synergy between machine learning and	{'Author': ", 'Content-Type': 'application	n, ['synergy', 'numerical', 'multilevel', 'pr
125		Copy of Rao Kotamarthi_Kotamarthi_Robust and predictable early warning system for weather and climate hazards_P			Ty ['rao', 'predictable', 'early', 'warning', '
17	2	Kibaek Kim_Privacy-Preserving Federated Learning and Control for Resilient Complex System Operations.pdf	AI at DOE Roundtable: Stewardship and	{'Author': ", 'Content-Type': 'application	n, ['infrastructure', 'privacy', 'federated',
39	2	Sohail Reddy_Improving Critical Infrastructure Operations and Maintenace Using Artificial Intelligence.pdf	AIML DOE White Paper-01.13.2022	{'Content-Type': 'application/pdf', 'Cre	at ['infrastructure', 'intelligence', 'utility',
43	2	James Hyungkwan Kim_Profit-Motivated Adversarial Attack Trained Robust Deep Reinforcement Learning.pdf	Profit-motivated adversarial attack	{'Author': 'Hyungkwan Kim', 'Company	': ' ['profit', 'motivate', 'adversarial', 'attac
100	2	Nhan Tran_Open-source tools and scientific benchmarks for edge AI democratization_P1Q2A1.pdf	Open-source tools and scientific	{'Content-Type': 'application/pdf', 'X-F	ar ['open', 'source', 'benchmark', 'edge', '
105	2	Logan Blakely_Physics-Informed Machine Learning for Critical Infrastructure Applications.pdf	Title: Physics-Informed Machine	{'Author': 'Blakely, Logan', 'Content-Ty	pe ['inform', 'learn', 'infrastructure', 'auth
136	2	James Hyungkwan Kim_Profit-motivated adversarial attack trained robust deep reinforcement learning for the data-d	Profit-motivated adversarial attack	{'Author': 'Hyungkwan Kim', 'Company	': ⁱ ['profit', 'motivate', 'adversarial', 'attac
139	2	Angel Yanguas_Accelerating the Manufacture of Pathogen-Specific PPE for Real Time Emergency Response in Future F	P Microsoft Word -	{'Content-Type': 'application/pdf', 'Cre	at ['pathogen', 'specific', 'ppe', 'real', 'em
157	2	Haruko Wainwright_AlxEM_AlatDOE_P1Q2A1.pdf	AI for Sustainable Environmental	{'Author': 'Haruko Wainwright', 'Conte	nt ['sustainable', 'environmental', 'manag
183	2	Tomas Rush_RushT_Fighting the Resistance_P1Q2A1.pdf	Title: Fighting the Resistance â€" Rapid	{'Author': 'Rush, Tomas', 'Content-Type	e': ['fight', 'resistance', 'rapid', 'precise', 't
198	2	Akash Dhruy_WhitePaper_P1Q2A1.pdf	Emerging Applications of AI for	{'Author': ", 'Content-Type': 'application	n, ['emerging', 'innovation', 'mission', 'sp
233	2	John Wu_Brain Inspired Learning Models for Anomaly Detection and Risk Assessment.pdf	Microsoft Word - AI-DOE-whitepaper-	{'Content-Type': 'application/pdf', 'Cre	at ['brain', 'anomaly', 'detection', 'risk', 'a
35	3	James Hyungkwan Kim_KimJ_AI-driven universal participation model for clean electricity markets of the future_P1Q2	Microsoft Word - 211130B	{'Author': 'hyungkwankim', 'Content-T	yp ('universal', 'participation', 'clean', 'ele
101	3	Harry Fry_FryH_Overcoming Sequence-Structure-Functionality_P1Q2A1.pdf	Overcoming Sequence-Structure-	{'Author': 'Fry, H. Christopher', 'Conter	t- ['sequence', 'structure', 'peptide', 'mat
11	4	Fric Dufek_DufekE_Rapid Operational Validation of Advanced Energy Storage Technologies_P1Q2A1.pdf	Rapid Operational Validation of	{'Author': 'Lisa Aldrich', 'Comments': ",	'C ['rapid', 'operational', 'validation', 'adv
18	4	Ralph Kube_Collaborative_Big_Machine_learning_P1Q2A1.pdf	Collaborative_Big_Machine_learning	{'Content-Type': 'application/pdf', 'X-F	ar ['big', 'learn', 'science', 'author', 'learn',
22	4	Tianzhen Hong_Al-Enabled Smart Thermostats_P1Q2A1.pdf	AI-Enabled Smart Thermostats for	{'Author': 'Tianzhen-X1C', 'Content-Typ	e ['smart', 'efficiency', 'flexibility', 'build
44	4	Gavin Liu_Transferable Machine Learning Assisted Risk Management for Subsurface Energy Storage.pdf	NETL â€" Liu	{'Author': 'Pranjali S. Muley', 'Content-	Ty ['liu', '
50	4	Uta Ruett_RuettU_IntegrationOfAutomationAndAIWithHigh-EndInSituCharacterizationToolsForAdaptiveSynthesis_PI	1 Integration of automation and AI with	{'Author': 'Stone, Kevin Hunter', 'Comr	ne ['automation', 'high', 'end', 'situ', 'char
117	4	Katrina Bennett_Advancing the Use of ML for Improved Understanding of Hydrologic Extremes Under Climate Change	Bennett_Karra_Vesselinov_Schwenk_N	{'Author': 'kbennett', 'Content-Type': 'a	ap ['bennett', 'la', 'dec', 'improved', 'unde
122	4	Katherine Wilsdon WilsdonK AutonomousControlofMicroreactorsthroughDigital P102A1.pdf	Microsoft Word -	{'Content-Type': 'application/pdf', 'Cre	at ['autonomous', 'microreactors', 'digital
160	4	Young Soo Park YoungP RoboticDigitalTwinForSelfDrivingLaboratory P1Q2A1.pdf	Microsoft Word -	{'Author': 'yspark', 'Content-Type': 'app	oli ['robotic', 'digital', 'twin', 'self', 'park', '
161	4	William Tang, William Tang, AI DOE WHITE PAPER, Fusion Energy Science, Nov.30, 2021, P1Q2A1.pdf	William Tang_AI DOE WHITE	{'Author': 'William M. Tang', 'Content-'	ry ['william', 'white', 'white', 'science', 'fu
186	4	Matthew Reno_AI-Based Protective Relays for Electric Grid Resiliency.pdf	Title: AI-Based Protective Relays for	{'Author': 'Blakely, Logan', 'Content-Ty	pe ['protective', 'relays', 'electric', 'grid', 'r
189	4	Aditya Sundararajan Adaptive Machine Learning for Resilient Networked Microgrids against Natural Disasters.pdf	Adaptive Machine Learning for	{'Author': 'Sundararajan, Aditya', 'Cont	er ['adaptive', 'learn', 'resilient', 'network
7	5	Cheng Wang Physics-Informed Deep Learning for Multiscale Water Cycle Prediction.pdf	Physics-Informed Deep Learning for	{'Author': 'chengw', 'Content-Type': 'ap	op ['inform', 'multiscale', 'water', 'cycle', '
20	5	Sarp Oral OralS SelfLearningAdaptiveExtremeScaleStoragethatBlursComputeandData P102A1.pdf	Self-Learning, Adaptive, Extreme-Scale	{'Content-Type': 'application/pdf', 'X-F	ar ['self', 'adaptive', 'extreme', 'storage', '
23	5	Brian Nord Closing the Loop Automate the Scientific Cycle AI DOE Workshop Nord PIQ2A1.pdf	Closing the Loop: Automate the	{'Content-Type': 'application/pdf', 'X-F	ar ['close', 'loop', 'automate', 'cycle', 'wor
31	5	Ryan Coffee Resiliency to Natural and Man Made Disasters.pdf	AI@DOE - Section 3	{'Content-Type': 'application/pdf', 'X-F	ar ['section', 'section', 'enterprise', 'neuro
36	5	Charles Farrar A Complexity Based Framework for Structural Health Monitoring .pdf	A Complexity-Based Framework for	('Author': 'DDS User', 'Content-Type': 'a	ap ['structural', 'health', 'monitoring', 'enj
40	5	Anubhay Jain JainA AutonomousLabs P1Q2A1.pdf	Microsoft Word -	{'Content-Type': 'application/pdf', 'Cre	at l'autonomous', 'language', 'processing
45	5	Wenting Li_Edge Computing Based Physics-Informed Machine Learning for Power Infrastructure Resilience.pdf	Edge Computing Based Physics-	{'Content-Type': 'application/pdf', 'Cre	at ['edge', 'inform', 'learn', 'power', 'infra
48		Dipankar Dwivedi Knowledge-Guided Machine Learning to Mitigate Impacts of Hydrological Extreme Events.pdf	Knowledge-Guided Machine Learning		n, ['guided', 'learn', 'mitigate', 'hydrologi
53		Dmitry Lyakh Dmitry QuantumAI WhitePaper AI4DOE P1Q2A1.pdf	Dmitry QuantumAI WhitePaper AI4D		'a ['inverse', 'hybrid', 'guantum', 'classica
55		Noah Paulson PaulsonN ArtificialInsightInMaterialsManufacturing PIQ2A1.pdf	Artificial Insight in Materials		'C ['insight', 'material', 'manufacturing', 'i
68		Sumit Bhattacharva BhattacharvaS Al-guided inverse materials design for extreme environments P1Q2A1.pdf	Microsoft Word - Al-guided inverse	{'Content-Type': 'application/pdf', 'Cre	

Image Classification Demo/Results

FOSSILS

FARLY PERMIAN LITHOLOGY (Leonardian) Quartz arenite sandtone, fine- to diaaram (medium-grained GEOLOGIC TIME SCALE well-rounded, well-2.6 sorted, white to pink

23.0 -

65.5

201.6

251.0

299.0

359.0

416.0

444.0

488.0

542.0

SEDIMENTARY DEPOSITIONAL STRUCTURES: ENVIRONMENT Reptile tracks Large scale cross-bed-Wind-blown sand insect burrows ding, ripple marks, dunes in arid desert slump structures

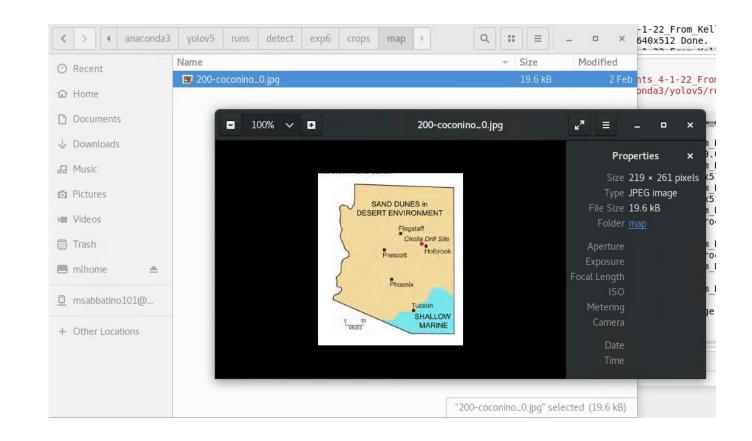
PALEOGEOGRAPHY TECTONIC SETTING: Eolian sand sea (dunes) on a coastal plain along coastal shoreline

Sands carried by northerly winds were deposited across the Arizona landscape in the early Permian Period, creating vast dunes that today form the Coconino Sandstone and other similar contemporaneous formations. The only fossils found in the Coconino are footprints of extinct animals, for which no evidence of skeletal remains has been found. By the end of the Permian Period (251 million years ago), the greatest mass extinction of all time occurred, resulting in the disappearance of up to 50 percent of all marine invertebrate families, and 75 percent of terrestrial vertebrate famil lies. Possible causes of the extinction include a worldwide loss of shallow marine environments during the convergence of continents into Pangaea and/or climatic changes triggered by volcanic eruptions, which released concentrations of CO₂ and SO₂ into the atmosphere. Multiple causes may have been at work

SAND DUNES in

DESERT ENVIRONMENT

holla Drill Sit


MARINE

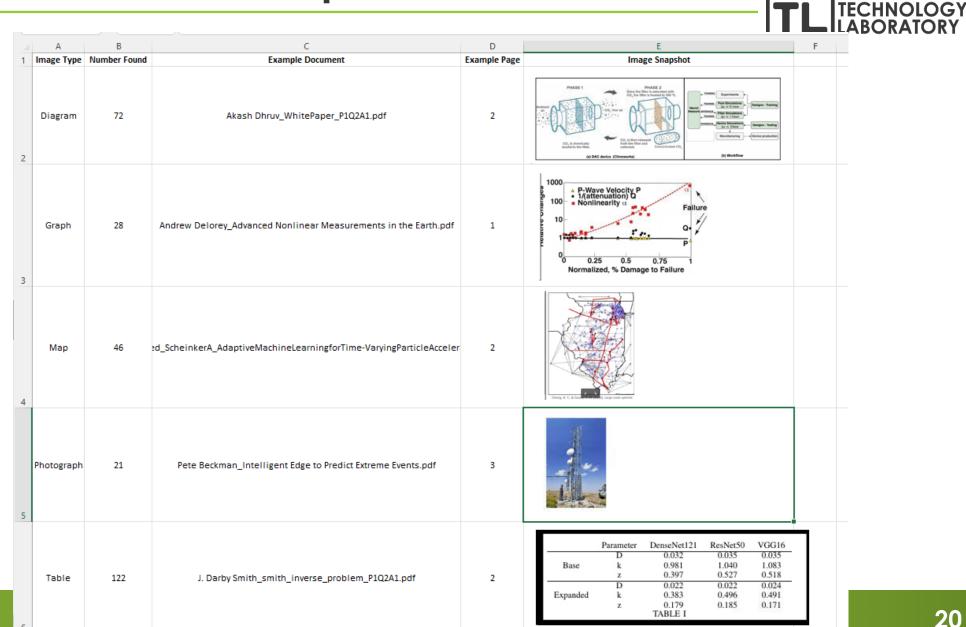
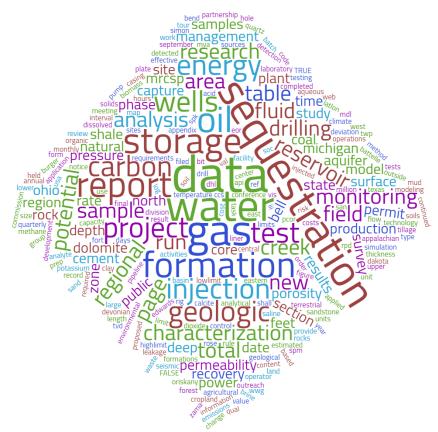
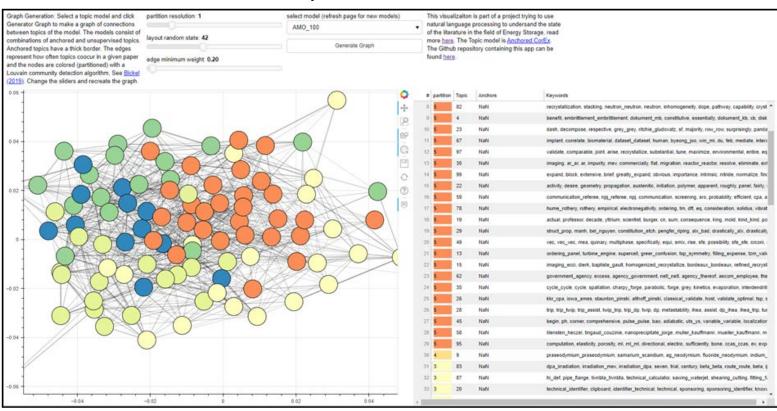


Image Classification Demo/Results

Image **Classification Demo/Results**


NATIONAL



Collaborative cross-project technology

- Use material same NLP tech
- Using other NLP Models Louvian Community Detection

Supporting Data Collection, Curation & Analysis in Other Areas

NATIONAL ENERGY TECHNOLOGY LABORATORY

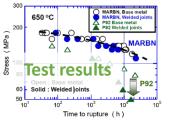
Data mining, including...

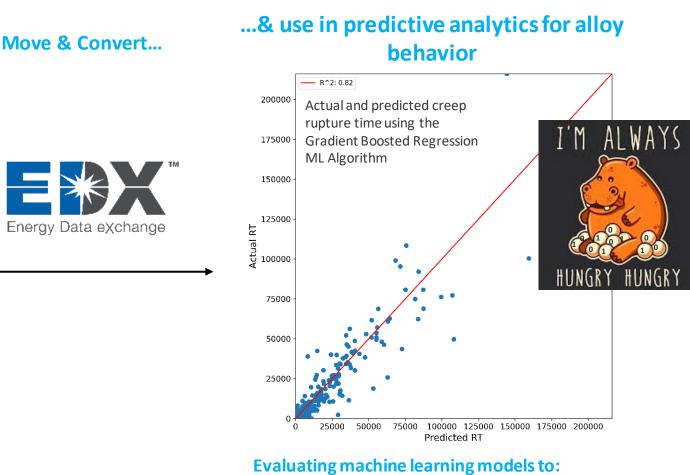
Alloy (wt%)	Ν	С		Mn	Cr	Mo	Ni	Si
316LNSS-7N		0.07	0.027	1.7	17.53	2.49	12.2	0.22
316LNSS-11N		0. St	Uct	ured	17.62	2.51	12.27	0.21
316LNSS-14N		0.14	0.025	aled 1	Data s7	2.53	12.15	0.2
316LNSS-22N		0.22	0.028	1.7	17.57	2.54	12.36	0.2

Images and Graphs

Fig. 1. Orientation imaging micrographs of solution annealed 31GLN 55 co annealing twins have been observed.

RESEARCH ARTICLE


Materials data analytics for 9% Cr family steel Vyacheslav N. Romanov . Narayanan Krishnamurthy, Amit K. Verma, Laura S. Bruckman, Roger I


st published: 15 February 2019 | https://doi.org/10.1002/sam.11406

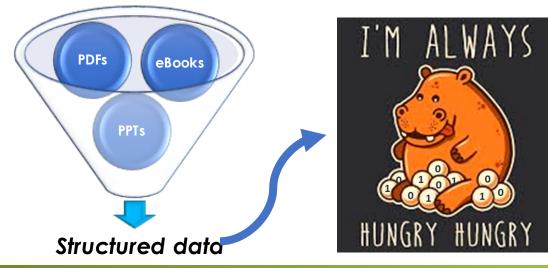
CT C	CS (MPA)	RT, hrs
593	310.3	1.45
593	275.8	5.5
593	275.8	6.33
593	206.8	55
593	171 .7	*5 357
593	144.8	1446
704	2008	0.37
704	easurents 137.9 103.4 75.8	1.5
704	137.9	9.5
704	103.4	50.5
	75.8	337
704	62.1	1227
816	103.4	0.75
816	89.6	1.87
816	68.9	12.75
816	48.06	84.3
816	36.5	331.8
816	29.0	1153

MARBN : 9Cr-3W-3Co-VNb, 120 - 150 ppm B & 60 - 90 ppm | P92 : 9Cr-0.5Mo-1.8W-VNb, 20 ppm B & 500 ppm N

- address data gaps
- identify key features in lifetime behavior of the alloy

Lessons Learned

Machine Learning, Artificial Intelligence, and Natural Language Processing are Difficult


• Whateverhappened to Watson?

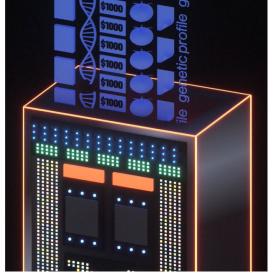
Lack of Labeled Training Data

Training data is time-consuming to develop and can be costly

Data availability is limited with Living Database

- Currently deployed on the Research Network
- The database would improve if deployed on a cloud service or other shared environment

Search Q Data Challenges Are Halting AI Projects, IBM Executive Says


The cost and hassle of collecting and preparing data comes as a shock for some companies, according to Arvind Krishna

The New Hork Times

What Ever Happened to IBM's Watson?

IBM's artificial intelligence was supposed to transform industries and generate riches for the company. Neither has panned out, Now, IBM has settled on a humbler vision for Watson

ΔΤΙΟΝΔΙ

TECHNOLOGY

ABORATOR

https://www.nytimes.com/2021/07/16/technology/what-happened-ibm-watson.html

FE and Carbon Storage program investments into data curation and management have led to the development of AI/ML tools and the preservation of millions of dollars of research products which benefits ongoing and future research. This has led to:

- A better understanding of CS relevant open- data density and data quality throughout US and Canada
- Improved access through the integration of CS data resources on EDX into GeoCube, SmartSearch, and SmartParse (EDX version of NLP tools presented here) for further searchability with spatial searches and keyword searches
 - Updates to GeoCube for enhanced spatial searchability and integration of modeling tools to come
- EDX AI/ML data discovery, labeling, integration tool developments trained to support Carbon Storage, SMART-CS, and NRAP
 - Deployment of AI/ML algorithms to allow on-demand data discovery and integration, ready-made for each end-user needs

National Look at Carbon Sequestration

NatCark

What's next: EDX4CCS

Carbon

Storage

Database

National Risk Assessment Partnership

Open

SmartSearch SmartParse

EDX4CCS

Data, Integration, generation, and deployment to feed SMART, NRAP, and regulatory models

Tools, Develop and/or integrate the deployment of tools for data interaction and visualization, decision-support such as for pipelines, regulatory permitting, resource characterization, data visualization, and more

Core CCS EDX DisCO2ver platform,

Broader community virtualized data computing platform, and central EDX CCS data and tool hub

Carpon

Storage P

arbonSAFE Project

NatCarb

https://edx.netl.doe.gov/about

Thank you!

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- Task 27 supports the development of data, materials, maps, analyses, and figures for the Carbon Storage Atlas, Natcarb Viewer, and Natcarb database. This includes the release of new data insights to the GCS community, through the sixth edition of the Carbon Storage Atlas, and through bi-annual updates to the Natcarb Viewer and Natcarb database.
- Task 28 focuses on addressing CS R&D data curation challenges associated with ingesting, describing, and curating data products from DOE FE to ensure enduring access and more efficient utilization of those resources using AI/ML enhanced approaches to support future CS R&D. Ultimately, this effort will result in tools, data resources, and virtual capabilities for the CSP and community to facilitate efficient CS data discovery, integration, and curation using NETL's EDX
- Use of EDX and development of tools to support the collection, curation, organization, labeling, and publishing of large quantities of data for carbon storage. Whether laboratory, field or computational, CS R&D is both a producer and consumer of data resources (datasets, tools, models, etc.). However, while the volume of open, online data is increasing exponentially, scientists struggle to find, access and make operable data products from previous R&D projects due to insufficient and/or burdensome online data curation tools and outdated techniques.

Project Overview

Goals and Objectives

- Funded by DOE as part of Carbon Storage DE FE-1022465, Tasks 27 and 28
- RSS Contract and ITSS contract researchers
- Ongoing performance dates 2018-2022
- Project Participants
 - PI: Kelly Rose
 - LRST: Paige Morkner, Michael Sabbatino, Andrew Bean, Lucy Romeo, Patrick Wingo
 - ITSS: Chad Rowan, TJ Jones, Aaron Barkhurst, Vic Baker

Organization Chart Carbon Storage Data

Project Partners DOE NETL RCSPs – Big Sky Carbon Sequestration Partnership, Southwest Partnership, Southeast Regional Carbon Sequestration Partnership, Midwest Regional Carbon Sequestration Partnership, Midwest Geological Sequestration Consortium, Plains CO2 Reduction Partnership.

NETL **Principal Investigators** Kelly Rose, Jennifer Bauer **Task 28**

Lead Organization

Curation of Carbon Storage R&D Products Through Advanced Data Computing Solutions

Lead: Jennifer Bauer Contractors: Chad Rowan, Michael Sabbatino, Paige Morkner, Andrew Bean, Lucy Romeo, TJ Jones, Aaron Barkhurst, Vic Baker, Other Matric Software Engineers and Developers

Task 27.0

Next Generation Development, Deployment, and Modernization of Database, Tools, Online Viewer, and Atlas

Lead: Jennifer Bauer

Contractors: **Paige Morkner**, Michael Sabbatino, Patrick Wingo, Andrew Bean, TJ Jones, Aaron Barkhurst, other Matric Software Engineers and Developers

Task 28.0: Project Timeline Overview

Curation of Carbon Storage R&D Products Through Advanced Data Computing Solutions (PIs: Michael Sabbatino, Jennifer Bauer)

EY2018-	EY2020 (\$240k)			E Y2021 (\$20	00k)		E Y2022 (\$200k)	
EY2019 (\$605k)	6 9	12 3 K M	6	9 N 0	12 3		9 12 Additional EY milestone task will be outlined in	
Ailestones		V		V				
Number	Expected Completion Dat	te Milestone Desc	ription					
EY20.28.I	04/30/2020	Push to public on I	EDX appropriate	MGSC Partnersh	nip data products.			— Chart Key
EY20.28.J	09/30/2020	Deploy LivingData	ase beta version	a capability in El	DX, private side, for CS	teams (e.g., RCSP	s) use and testing.	Milestone
EY20.28.K	12/31/2020	Integration of CSP GeoCube.	data products the	at are spatially re	elated through enhance	ed EDX spatial sear	ch and discovery tool on	■ Project
EY20.28.L	03/31/2021	Deploy NETL Sma	rtSearch version	2 algorithm in E	DX to support automat	ed gathering of oper	n, CS relevant data.	Complet
EY20.28.M	03/31/2021	Deploy LivingData	ase version 1 ca	apability in EDX,	private side, for CS tea	ams (e.g., RCSPs) ເ	ise and testing.	
EY21.28.N	09/30/2021	Develop and test S	SmartSearch and	SmartParse beta	a integration.			Go/No-G Timefrar
EY21.28.O	09/30/2021	Complete testing of	f Living Database	e dashboard tool	S.			
EY21.28.P	12/31/2021	Create additional t	raining data for S	martParse image	e, graph, and table ext	raction model impro	<i>v</i> ement.	
EY21.28.Q	03/31/2022	Develop beta Living	g Database user	interface and da	shboard.			
EY22.28.R	07/29/2022	Ingestion and push	n to public on ED	X appropriate SV	V Regional Partnersh	ip data products.		
	Key Accomplishme	ents/Deliverables	\$			Value D	elivered	
EDX, for a combined 2018–2020, Big dat 2019–2021, Test an assimilate relevant	tion of Big Sky , <u>PCOR</u> , Midwest CS Pa d total of 3,037 and 1.64 TB of data a computing cluster, Watt, set up and w d validate SmartSearch for use with co CS data; including work as part of an NI	ork to directly link EDX wit mmercial cloud & EDX to e DA with Google and collabo	h these computing c valuate capabilities vration w ith DOE-HQ	eapabilities • E to A • OCIO s	Peveloping capabilities to qu Pelivering EDX's public-priva mazon Web Services (AWS) cientists.	ery curated data. te capabilities, including g cloud services , seek to fa	onal CS partnerships and open-so prowing access to its big data com cilitate more effective research fo	puting cluster and or DOE-FE subsurface
2020–2021, Develop Living Database logic to host and storge large volumes of CS data 2021–2022, Deploy beta instance of Living Database front end and dashboard tools 2022, Addition of any final RCSP and other CS resources to EDX					nd capabilities to enhance u	iser experience and provi	<mark>th other online capabilities</mark> , data de research teams with the resou undancy, and drive innovation.	

Bibliography

- List peer reviewed publications generated from the project per the format of the examples below.
- Morkner, P., Bauer, J., Creason, C., Bean, A., and Rose, K., "A Data Quality Assessment Method to Support Carbon Storage," in preparation. Target journal: *Nature Scientific Data*. (Tasks 27.0, 28.0)
- Morkner, P., Creason, C., Sabbatino, M., Wingo, P., DiGiulio, J., Jones, K., Greenburg, R., Bauer, J., and Rose, K., "Distilling Data to Drive Carbon Storage Insights," accepted pending final revisions, *Computers and Geosciences*. (Tasks 27.0, 28.0)
- Barkhurst, A., Morkner, P., Bauer, J., Rose, K. GeoCube, TRS report, in prep, target completion Fall 2021.