Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Lucy Romeo 1,2, Kelly Rose 1, MacKenzie Mark-Moser 1,2, Andrew Bean 1,2, Jennifer Bauer 1, and Burt Thomas 1.

1National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA
2NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA
Problem:

- The validated, volumetric DOE CS method (Goodman et al., 2016) for calculating resource potential is identical for onshore and offshore systems.

\[
G_{CO2} = A_t \cdot h_g \cdot \Phi_t \cdot \rho \cdot E_{saline}
\]

- \(G_{CO2}\): Amount of CO2
- \(A_t\): Total area
- \(h_g\): Gross height
- \(\Phi_t\): Total porosity
- \(\rho\): CO2 density at storage site
- \(E_{saline}\): Saline efficiency

Offshore ≠ Onshore

- CO2 density
- Unlithified sediments are more porous and permeable

Solution:

Adapted the DOE CS method for offshore saline systems to account for key differences.

OCSS: Offshore CO₂ Saline Storage Methodology

Methodology supporting top-down assessments for offshore saline systems

- **Science-based screening methodology** to estimate saline storage potential
 - Storage estimates ($G_{CO₂}$) and saline efficiency (E_{saline}) estimates are calculated using all possible variable combinations
 - Produces distributions of $G_{CO₂}$
 - Does not factor in time-dependent processes

\[
E_{saline} = E_A E_H E_\Phi E_d E_v
\]
\[
G_{CO₂} = A_t h_g \Phi_t \rho E_{saline}
\]

Values Delivered:
Provides top-down, volumetric saline storage estimates for regional, long-term planning

Fills assessment need before site-specific, or commercial estimates

Romeo et al. 2022

U.S. DEPARTMENT OF ENERGY
OCSS Methodology

Accounting the offshore saline system

- **CO₂ density and phase** given overlying water column
- **Setback distances** to support risk mitigation
- **Depositional environments** (Gorecki et al., 2009)

[Diagram of CO₂ storage in the ocean floor with key points labeled:]

- Key:
 - d = Depth (m)
 - t = Temperature (°C)
 - W = Water Column
 - S = Seafloor
 - T = Reservoir Top
 - M = Reservoir Midpoint
 - B = Reservoir Bottom

[Map indicating applied setback distances and pathways from leakage.]

Romeo et al. 2022

Offshore CO₂ Saline Storage Calculator

Desktop tool mechanizing the OCCS Methodology

• Standalone (Python v3.7)

• Enables multi-scale assessments

• Leverages power of spatial data

• Flexible tool enables customization
 • 10 - 20 parameters
 • Data availability
 • Interpreted well logs
 • Literature
 • Spatial data

Tool is currently available on EDX

https://edx.netl.doe.gov/dataset/offshore-co2-saline-storage-calculator
OCSS Calculator Outputs

Tool outputs for visualization and additional analytics

A. Data table
B. Summary table
C. Variable distributions*
D. Phase distributions*
E. Spatial data*

* Optional outputs

https://edx.netl.doe.gov/dataset/offshore-co2-saline-storage-calculator
Applications in the Northern Gulf of Mexico

Evaluated 18 geologic domains for saline storage resources

Domains defined by Subsurface Trend Analysis™
(Mark-Moser et al., 2018; Rose, Bauer, Mark-Moser 2020)

- Petrophysical Well Logs dataset
- Sands well logs
- STA™ domains

Well logs (Bean et al., 2018)
- 2–50 logs selected per domain
 - Net sand thickness of >10ft
 - Shale seal (>50 ft)

Expert knowledge & literature
- Depositional environments:
 Alluvial fan, slope basin, delta, peritidal, and shelf
- Effective porosity, microscopic, and volumetric displacements
 (Gorecki et al., 2009)

Spatial data representing potential leakage pathways
- Faults, plumes, chemosynthetic communities, and seeps

All data is available on Energy Data exchange

Key findings

Saline storage potential

- Produced 160 – 65 million estimates, ranging from 0.5 – 10,000 Gt

- All resulting densities of CO₂ at depth categorized phase as supercritical or liquid

- Saline efficiency (E_{saline}) identified as the most significant factor (0 – 0.14)

- Multiscale analysis possible
 - Total area (A_T) ranged from ~6,000 – >45,000 km²
Streamlining with NETL Tools & Models

Offshore Risk Modeling Suite

- Model fate & transport of release events
- Map socio-economic and environmentally vulnerabilities and risks
- Assess geohazard likelihood
- Measure the current state of infrastructure integrity
- Spatially quantify uncertainty
- Share and visualize data, models, and tools

Improving resource estimates & risk prevention strategies

Leveraging the Offshore Risk Modeling suite to inform injection site selection

Offshore CO2 Storage Calculator

Down-select areas for safe injection site selection and risk mitigation

Potential leakage pathways

https://edx.netl.doe.gov/offshore/portfolio-items/risk-modeling-suite
Building an analytical workflow using big data-driven models to identify optimal and cost-effective reservoirs, subsurface conditions, and infrastructure for reuse.

- Demonstrate & validate the application for three case studies.

Values Delivered:
Identify safe, economically-viable opportunities for carbon storage, co-saline storage, geothermal, and beneficiation for renewable applications supporting regulators, industry, and research.

What’s next: EDX4CCS

EDX4CCS

- **Data**, Integration, generation, and deployment to feed SMART, NRAP, and regulatory models
- **Tools**, Develop or integrate the deployment of tools for data interaction and visualization, decision-support such as for pipelines, regulatory permitting, resource characterization, data visualization, and more
- **Core CCS EDX DisCO₂ver platform**, Broader community virtualized data computing platform, and central EDX CCS data and tool hub

https://edx.netl.doe.gov/about
Netl Resources

Data & Tools

Relevant Publications

NETL RESOURCES

VISIT US AT: www.NETL.DOE.gov

Lucy Romeo, Lucy.Romeo@netl.doe.gov
Kelly Rose, Kelly.Rose@netl.doe.gov
Jennifer Bauer, Jennifer.Bauer@netl.doe.gov