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Problem Statement and Technical Objective

Objective: Capture very small CO, or
brine leakage over large area

(co.)

Detect leaks of 100 g/s within 100 d over an area of 100 km? for

$100k/yr amortized over 10 years.
CO2 injection

Challenge 1: Unsatisfactory Detectability

Current geophysical monitoring methods do not yield sufficient detectability
to capture very small leakage (due to limitations in data coverage, low spatial

resolution, acquisition noise and artifacts, etc.)

Challenge 2: Expensive Geophysical
Monitoring

Small Leakage Detection

The high financial/computational cost and subjective human factors

hinders the applicability of the existing monitoring methods.
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GeoVision:

Seismic Imaging & Inversion Suite —an Overview

2D/3D Imaging
[Zeng et al. (2021)]

Multiphysics
[Feng et al. (2022)]

Time-Lapse
[Liu et al. (2021)]

S

Uncertainty
[Liu et al. (2022)]

Induced Seismic
[Zhang et al. (2022)]
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InversionNet
Wu & Lin (2019)]

Unsupervised CNN
[Jin et al. (2021)]

Physics Guided CNN
[Zhang & Lin (2020)]

Graph Network
[Zhang et al. (2022)]

Physics Simulations
[Lin et al. (2017, 2018)]

Physics + Data Augmentation
[Gomez et al. (2020)]

Transfer Learning
[Zhang & Lin (2019)]

Style Learning
[Feng & Lin (2021)]
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GeoVision Driven by Physics and Machine Learning

What is GeoVision? A

» Collection of site-agnostic geophysical imaging techniques [[333 gom s 22 |
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What GeoVision Does? = ’ :

» Purely Data-driven Neural Networks [Wu and Lin, (2019)]

hxw deconv, no padding
3x3 conv, stride 1

* Real-time 2D/3D CO, Plume Imaging (Saturation)
» Leakage Detection
* Uncertainty & Risk Estimate (Data and Model Error)
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InversionNet

Yue Wu and Youzuo Lin, “InversionNet: An Efficient and Accurate Data-driven Full Waveform Inversion,” IEEE Transactions on Computational Imaging, 6(1):419-433, 2019.
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GeoVision Driven by Physics and Machine Learning
What is GeoVision?

» Collection of site-agnostic geophysical imaging techniques

* Basedon physics-guided machine learning Input predicted Reconstructed
Seismic Data (p) CNN Velocity Map (v) Forward Modeling Seismic Data (p)
. . . Acoustic Wave Equation r‘
What GeoVision Does? BRI
— 1 Finite Difference —
A . p:+1 = h(v.p‘.pr'l,s[)
» Purely Data-driven Neural Networks [Wu and Lin, (2019)] l ]
» Real-time 2D/3D CO, Plume Imaging (Saturation) b ety |4

» Leakage Detection
* Uncertainty & Risk Estimate (Data and Model Error)
* Physics-guided Unsupervised Networks [Jin et al. (2021)]

* Enable Imaging without any Label Information . . .
Ing Y Physics-guided Unsupervised Networks

Peng Jin, Xitong Zhang, Yinpeng Chen, Sharon Xiaolei Huang, Zicheng Liu, and Youzuo Lin, "Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop", ICLR, 2022.
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GeoVision Driven by Physics and Machine Learning

What i1s GeoVision?

» Collection of site-agnostic geophysical imaging techniques

* Basedon physics-guided machine learning

What GeoVision Does?

» Purely Data-driven Neural Networks [Wu and Lin, (2019)]
* Real-time 2D/3D CO, Plume Imaging (Saturation)
» Leakage Detection
* Uncertainty & Risk Estimate (Data and Model Error)

* Physics-guided Unsupervised Networks [Jin et al. (2021)]
* Enable Imaging without any Label Information

* Graph Convolution Neural Networks [Zhang et al. (2022)]

* Induced seismic monitoring and characterization

Xitong Zhang, Will Reichard-Flynn, Miao Zhang, Matthew Hirn, and Youzuo Lin, "Spatio-Temporal Graph Convolutional Netw orks for Earthquake Source Characterization”, JGR-Solid Earth, 2022 (Under Review ).

—
0:9 Los Alamos Background

NATIONAL LABORATORY

Graph Neural Network [Zhang et al., 2022]
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GeoVision Enhanced by Large-Scale High Quality Training Data

OpenFWI. Data Overview
A large-scale open
dataset for subsurface
geophysics

Supervised

Kimberlina3D ~ FlatVEL Model Complexity

* Multi-scale and multi-dimension e

- Style-transfer
= Over 500K of samples (labeled and unlabeled)

- Kimberlina3D
= 2D (11 datasetS) and 3D (1 dataset) CurvedFault Style-transfer |:| Kimberlina2D
« Multi-purpose Applications FlatFault B curecraut
- CurvedVEL
= Carbon sequestration, fossil fuel energy, and general purposes B ot

* Multi-complexity Data B o

= Simple layered structures, hypothetic synthetic structures, and

physically realistic structures OpenFWI (https://openfwi-lanl.github.io/)

Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili Zeng, Yingpeng Chen, and Youzuo Lin, "OpenFW!I. Large-scale Multi-structural Benchmark Datasets for Full
Waveform Inversion”, arXiv, 2022 (under review NeurlPS).
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https://openfwi.github.io/

Project Scope: Task & Milestone

Major Milestone e
— Project Kick-off - ——— 4
= Preliminary Study & Data Preparation
— R&D Tasks We Are Here!  @— .
» Task 1 — Synthetic Data Test (Kimberlina 1.2) Fy 21
» Task 2 — Controlled Experiment Test 1 (Cranfield) Task 3 Completion ~ &= = — = =

» Task 3 — Controlled Experiment Test 2 (Sleipner)

= Task 4 — Controlled Experiment Test 2 (San Juan) -
FY
Task 2 Completion @= — — — =

_ FY 19
Task 1 Completion @& — — — =

: : FY 18
Project Kick-offd— — = = =
;“M\ “ ‘..'9‘”"' ‘ v*;{ '
;‘V::, = ¥ ..“: W )7, ;‘ ..‘ &
B ,‘ft::,“_ & e ﬁp“ f-. § J-"-/
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Previous Task 1. Leakage Detection using Kimberlina 1.2 Data
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Ground Truth
[Gomez et al., 2020]

Leakage Mass Detection
[Zheng et al., 2019]

Traditional
[Gomez et al., 2020]
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[Gomez et al., 2020]

« GeoVision learns critical information from massive amount of data to predict leakage mass and plume.

» Collaboration with Zan Wang and Bob Dilmore via NRAP.,

Zheng Zhou, Youzuo Lin, Zhongping Zhang, Yue Wu, Zan Wang, Robert Dilmore, and George Guthrie, "A Data-Driven CO2 Leakage Detection Using Seismic Data and Spatial Temporal Densely Connected

Convolutional Neural Netw orks," International Journal of Greenhouse Gas Control, Vol 90, 2019.
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Previous Task 2. Leakage Detection using Cranfield Data

Train Test Test Train Test Test
(Non-leak) (Non-leak)  (Leak) (Non-leak) (Non-leak)  (Leak)
> > >—> >
1.0 Lt
1.00 — Target —— CONV_LSTM
= CONV_LSTM_results 0.8}
0.75
0.6
0.50 F
0.4}
0.25F 0.2
0.00 | , End of training > | End of validatiop———————> | , 0.0 ) End of trainin 9., i End ofgalidgtion
0 2 4.16 6 7.22 8 TEST END(10.5) 0 2 4.16 6 7.22 8 TEST END(10.5)
Signature Prediction Leakage Detection
[Sinha et al., 2020] [Sinha et al., 2020]

« ML model, trained on non-leak temporal pressure data, can predict leakage.

« Through the collaboration with Alex Sun and BEG.

Saurabh Sinha, Rafael Pires de Lima, Youzuo Lin, Alexander Y. Sun, Neill Symons, Rajesh Paw ar, and George Guthrie, “Normal or Abnormal? Machine Learning for the Leakage Detection in Carbon
Sequestration Projects Using Pressure Field Data,” International Journal of Greenhouse Gas Control, Vol. 103, 2020.
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Previous Task 3: In-Situ Monitoring using Sleipner Data

o
\

(M
:Injection Mass (Mt)

I
- oo

1990 1995 2000 2005 2010 2015

Repeated Seismic Acquisition (10 years)

When sufficiently trained, ML can fill in the gap of static data to inform the dynamics of the plume.

In-situ Monitoring
[Feng et al., 2021]

Shihang Feng, Xitong Zhang, Brendt Wohlberg, Neill Symons, and Youzuo Lin “Connect the Dots: In Situ 4D Seismic Monitoring of CO2 Storage w ith Spatio-temporal CNNs,” IEEE Transactions on

Geoscience and Remote Sensing, vol 60, 1-- 16 2021.
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Task 4. Time-lapsed Imaging using San Juan Basin Data

San Juan Basin Dataset , T
(CarbonSAFE) e

« DataAvailability
= Baseline velocity model built from well logs
= Time-lapse velocity models built from reservoir simulation (100 yrs)
= Seismic Data Simulation (5 sources and 70 receivers)

Pre-Injection Injection Post Injection [

30 yrs 20 yrs S0 yrs Injection
History

San Juan Basin

« Collaboration with Wiliam Ampomah (NMT) via CarbonSAFE.

Y
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Task 4. Time-lapsed Imaging using San Juan Basin Data

Z(m)

Time(ms)
Time(ms)

4500 4500
100 100
4000 3 4000 30
3500 20 3500 20
400 400
3000 10 3000 10
2500 0 2500 i 0
700 700
600 2000 1 600 2000 i
} : : 1500 } : ; 1500
0 300 600 1000 - 0 300 1000 -2
0 30 60 0 30 60

600
X(m) Trace Number X{rm) Trace Number

Baseline Velocity Baseline Seismic Time-lapse Velocity Time-lapse Seismic
B K
Test ML’s performance with very few data

« Sub-Task 1: Seismic Data & Well Logs (Givenb & d & well logs, infer a & c)
« Sub-Task 2: Seismic Data (Givenb & d, infer a & ¢)
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Motivation

“What | cannot create,

| do not understand”

Richard P. Feynman

Y
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Task 4.1: Create Velocity from Reservoir Simulation & Well Logs

- 00000 ]
What Physics do we know

« Wave equation @
* Welllogsvalues

= Location of the reservoir —» Fwi _—
» Range of velocity perturbation /
" " " Monitor data . Predicted
A hybrid imaging model ervordae ) | mesoner [ ———— (et

» Baseline Inversion: traditional FWI
« Time-lapse Inversion: Machine Learning

Training data

Proposed Idea [Liu et al., 2022]

Yanhua Liu, Shihang Feng, llya Tsvankin, David Alumbaugh, and Youzuo Lin, “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” under review in Geophysics, 2022.
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Task 4.1: Create Velocity from Reservoir Simulation & Well Logs
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« High quality synthetic velocity models are generated.

Yanhua Liu, Shihang Feng, llya Tsvankin, David Alumbaugh, and Youzuo Lin, “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” under review in Geophysics, 2022.
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Task 4.1: Create Velocity from Reservoir Simulation & Well Logs
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« High quality synthetic velocity models are generated.

* CO, plume dynamics are very well captured.

Y
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Time-lapse (Ours)
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Task4.2: Create Velocity from Style-Transform Learning

e —......~

f Total Loss

VelocityGen:
Transform from
Natural Images into ,.

Velocity Models p,. = A S —

Subsurface

Synthesize large volume of velocity maps from natural

images that would yield realistic representations of

subsurface kinematics and geology.

Natural Image

Velocity Map

VelocityGen [Feng et al., 2021]

Shihang Feng, Youzuo Lin, and Brendt Wohlberg, "Multiscale Data-driven Seismic Full-w aveform Inversion with Field Data Study”, IEEE Transactions on Geoscience and Remote Sensing ,vol 60, p1 — 14, 2021.

Y
‘:9 Los Alamos Current Status 20

NATIONAL LABORATORY



Task4.2: Create Velocity from Style-Transform Learning

Input Dataset

« Contentlmages
= COCOdataset contains 67,000 natural
images
» Geologic Style
= Marmousivelocity modelis used as

geologic style image

Our method yields physically

realistic velocity models

Velocity Models Generated from Natural Images

Shihang Feng, Youzuo Lin, and Brendt Wohlberg, "Multiscale Data-driven Seismic Full-w aveform Inversion with Field Data Study", IEEE Transactions on Geoscience and Remote Sensing ,vol 60, pl — 14, 2021.
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Task 4.2: Create Velocity from Style-Transform Learning

4500 4500

4000 ~100

3500
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3000
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X(m) 0 300 600

1500

X(m) 0 300 600
X(m) X(m)
Baseline (True) Baseline (Ours) Time-lapse (True) Time-lapse (Ours)

B 4

« Natural images are good sources of images for subsurface structures!

« Additional R&D effortwould be needed to further improve the imaging quality.

—
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Imaging on the Edge: a Step Toward Real-Time Decision Making

* Run GeoVisionon an edge device (Raspberry Pi) to provide real-time imaging.

« Won2" Place in SIGDA University Demonstration at the 2022 Design Automation Conference.
» Collaboration with U New Mexico and George Mason.

—
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Summary

0 Machine 02

Learning

Physics
Knowledge

Machine learning, particularly,
deep neural network models
provide great potential in
improving seismic imaging
performance (i.e., enhancing
the spatial resolution and
accelerating imaging speed).

The incorporation of physics
knowledge will significantly
improve model robustness
and generalization.
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One of the major challenges
employing deep learning-
based imaging models for
CO, monitoring is the lack of
data.

Data
Scarcity

Current Status

04 GeoVision

+ We demonstrate the great
potential of GeoVision
using four case studies
(Kimberlina, Cranfield,
Sleipner, and SJB).

* Look for more

applications!

Summary 24
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Gantt Chart

Task 2: Project Timeline Overview =[N

P P . : TL TECHNOLOGY
Monitoring for small leaks over large areas post-injection using conventional datasets LABORATORY
(Proof of conce

2017* 2019*
$250k** $415k**

Proof of concept/Method development (T)

Seismic images o 6 0

e S "

Milestones Chart Key
1. Collected field data set for testing extraction of small acoustics signals associated with fluid movement (leakage) TRLScore | G0/ No-Go Project Milestone
2. Seismic Images: Development/testing of machine-learning (ML) method for extracting large-leak signal from synthetic data Timeframe Completion
3. Acoustic: Development/testing of ML method for extracting large-leak signal from acoustic ’comphte ’ Y19 ’ FY20
4. Pressure: Development/testing of ML method for extracting large-leak signal from pressure data G No-G
5. Seismic Images: Testing of ML potential to extract large-leak signal from noisy synthetic seismic images 1 Determine which methc?d{s] sﬁauldobe used to detect a
6. Pressure: Testing of ML method for extracting small-leak signal from noisy pressure data leak of 100 g/s over an area of 100 km? for 10-year
7. Seismic Images: Testing of ML potential to extract small-leak signal from synthetic seismic images amortized cost of $100k/year
8. Acoustic: Testing of ML method for extracting small-leak signal from noisy acoustic data 2. Initiate development of multi-data ML integration
9a. Develop requirements for Method Development/Application platform and test/demonstrate on field data? Decision
9b. Develop multi-data ML integration method

based on proof-of-concept that analysis of conventional

10. Initial testing on real data sites (a, b, c...) data (seismic + pressure + acoustic) could meet

performance/cost eoals
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