PERSPECTIVES FROM RECENTLY PERMITTED ONSHORE CCS PROJECTS

U.S. Department of Energy
Carbon Management Project Review Meeting

Pittsburgh, Pennsylvania
Wednesday, August 17, 2022

John Hamling
Assistant Vice President for Strategic Partnerships
CO₂ Point Sources

• Ethanol Production
• Coal-Fired Power Generation
• Gasification
• Fertilizer Production
• Natural Gas Processing
• Natural Gas Power Generation
• Industrial Processes

Capture/Storage Models

• Source/Sink-Matched
• Source Aggregation and Storage Hub
• Capture Hub with Distributed Storage
• Hybrid storage with Enhanced Oil Recovery, Minerals Recovery and/or other Utilization
STORAGE FACILITY PROJECT BOUNDARIES
North Dakota UIC Class VI

• **CO₂ Plume** – Simulated boundary at end of injection.

• **Stabilized Plume** – Simulated boundary at post-injection stabilization.

• **Storage Facility Area** – Boundary + Buffer
 [Pore Space Lease and Amalgamation Area]

• **Hearing Notification Area** – ½ mile from the storage facility area boundary (mineral estate and surface estate).

• **Area of Review (AOR)** – Not shown; calculated with simulation.

• **Evaluation Area** – 1 mile from the storage facility area boundary (default minimum AOR).
Storage facility expansion to accommodate additional CO$_2$

- Expand storage facility area ➔ More capacity
- More wells ➔ Storage efficiency ➔ More capacity
- Stacked storage ➔ More capacity
- Active reservoir management ➔ Storage efficiency ➔ More capacity
STACKED STORAGE

Conceptual Scenario

Complex geology, lower capacity, and moderate development cost

Simple geology, great capacity, and low development cost

Moderate geology, moderate capacity, and high development cost

Great capacity, simple geology, and high development cost
ACTIVE RESERVOIR MANAGEMENT

Active Reservoir Management
• Mitigate pressure interference between neighboring CCS projects.
• Improved storage efficiency / increase capacity of a permitted CO₂ storage site.
• Reduce stress on sealing formation.
• Geosteer injected fluids (injection and extraction of brine).
• Divert pressure from potential leakage pathways.
• Improve injectivity, capacity, and storage efficiency.
• Reduce area of review (AOR).
• Accelerated pressure dissipation after injection.

Brine Treatment
• Alternate source of water.
• Reduced disposal volumes.
• Salable products for beneficial use.

Illustration modified from Lawrence Livermore National Laboratory https://str.llnl.gov/Dec10/aines.html
THANK YOU

Critical Challenges. Practical Solutions.
ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FE0031838 and DE-FE0026160.

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.