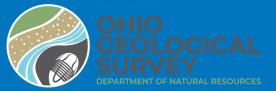
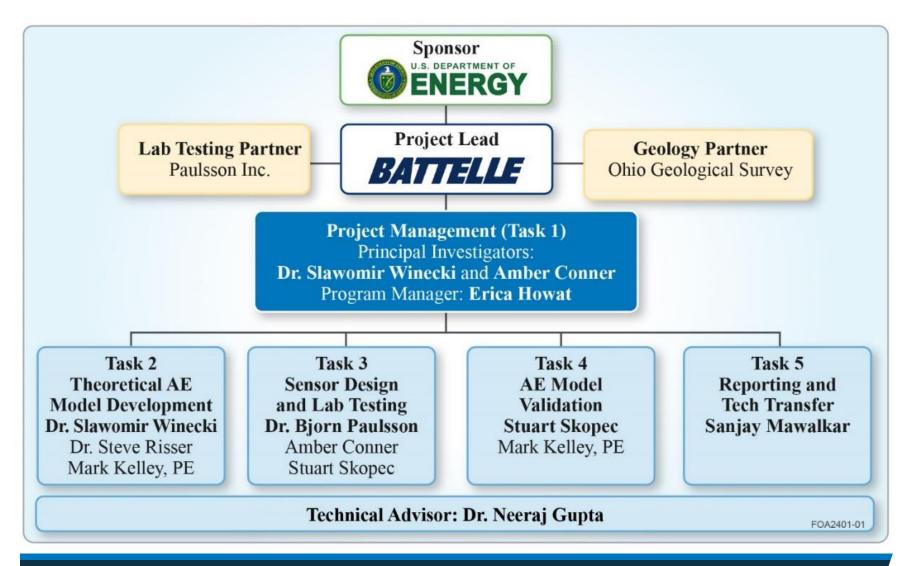
Acoustic Emissions Sensing for Tracking CO₂ Movement in Caprock of CCUS System Project Number DOE-FOA2401


Slawek Winecki, Amber Conner, Erica Howat (Battelle Memorial Institute) Ruiqing He, Bjorn Paulsson, Mike Wylie (Paulsson, Inc.) Jim McDonald, Chris Waid (Ohio Geological Survey)

It can be done

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

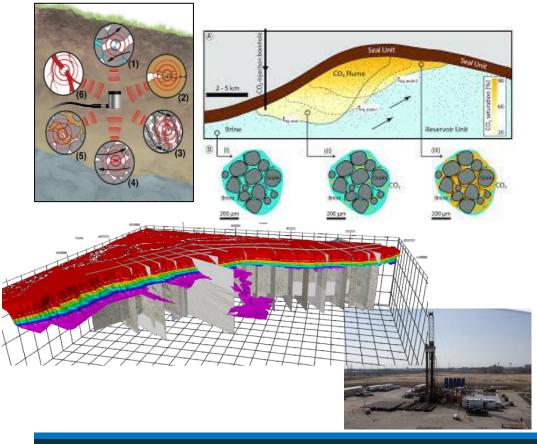


Disclaimer

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Project Participants

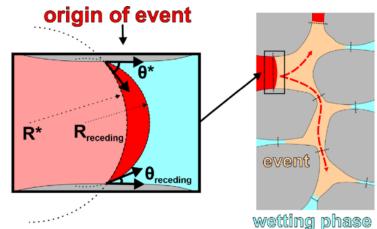
Deliverables / Milestones

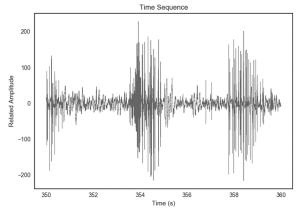

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Budget Period	Verification Method
3.2	Identify suitable sensor components* and caprock samples**	April 2022	1	Technical Memo; Quarterly Report
2	Develop theoretical AE model for CO ₂ flow in confining layers	August 2022	1	Technical Memo; Task-2 Technical Report
3	Complete CO ₂ core flooding experiments and obtain AE data	January 2023	1	Technical Memo; Task-3 Technical Report
4.1	Complete lab-scale fluid flow simulation	August 2023	2	Technical Memo
4	Validate AE model	November 2023	2	Technical Memo; Task-4 Technical Report
5	Final Report	February 2024	2	Final Report

*Supply Chain issues led to a delay in procurement of experimental set up **Porosity/Permeability data received beginning of August

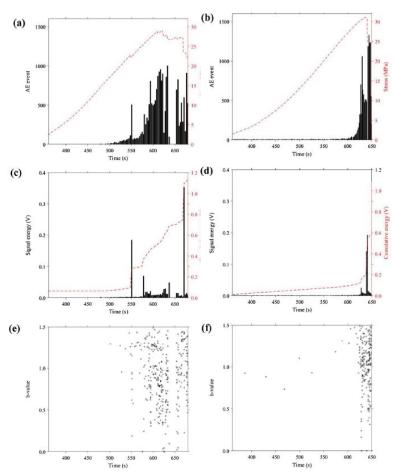
Project Overview: Overall Goal

Development of an acoustic emissions (AE)-based technique to predict the location and movement of CO_2 through a confining layer in carbon capture, utilization, and storage (CCUS) system.




- Development of a theoretical model for CO₂-induced AEs in caprock layer
- Design of an **intrinsic sensor system** to detect and characterize AEs
- Design and completion of laboratory experiments to record AE data from CO₂ core flooding
- Validation of the model with experimental data and lab-scale fluid flow simulations

Theoretical Model Development


- Model Conceptualization
 - Identification of existing AE models
 - Development of physics-based model
- Theoretical Model Conception
 - Development of a model that captures key observable characteristics of CO₂ generated AE signals:
 - Amplitude, frequency of occurrences per unit volume of reservoir, acoustic frequency spectrum, and propagation and attenuation properties

Acoustic Emission Studies on Sandstones and Carbonates

Modified from Tarokh et al. 2020 – Figure showing reloaded samples AE events (b,d,f) have fewer events

- Review acoustic emission CO₂ studies on reservoir carbonate and sandstone rocks. Studies indicated:
- Initial CO₂ injection shows the greatest AE generated events.
- Continued injection creates less AE events.
- Carbonates tend to be altered due to pressure, temperature, and interaction of CO₂ injection.

Acoustic Event Experiments

- Literature review grouped these studies into three categories:
 - Experiments where injection of fluid caused a fracture of rock sample and AEs
 - Laboratory-scale tests where injection fluid caused microseismic events and AEs
 - Laboratory experiments exploring the Haines jumps mechanism of AEs

Rock Fracturing and AE Studies

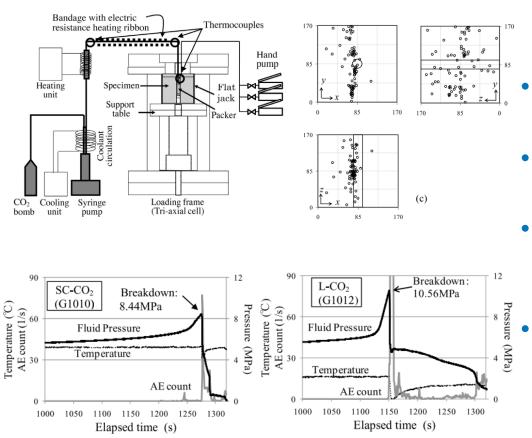
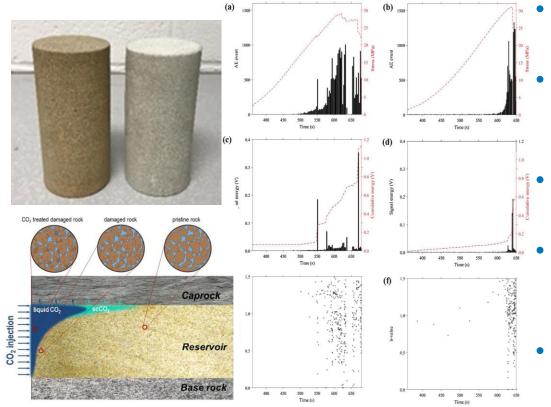
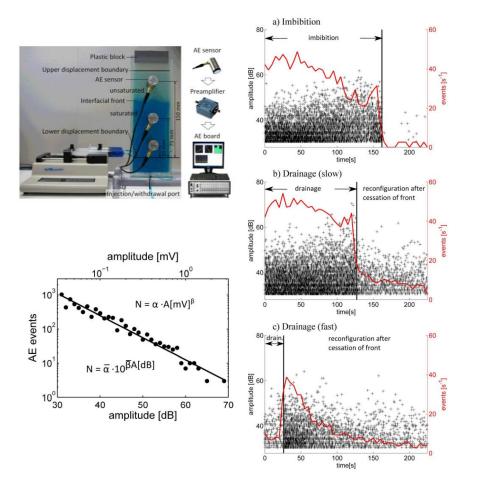



Figure adapted from Ishida et al. 2012

- Supercritical and liquid CO₂ injected into granite cubes until it fractures
- High pressures, up to ~1,500 psi, temperatures up to 55°C
- PZT elements with a resonance frequency of 300 kHz
- AE rate was measured as a function of CO₂ pressure until the granite rapture
- Location of AEs events was determined based on time delay information recorded by multiple sensors
- However, CO₂ injection does not traditionally cause fracturing

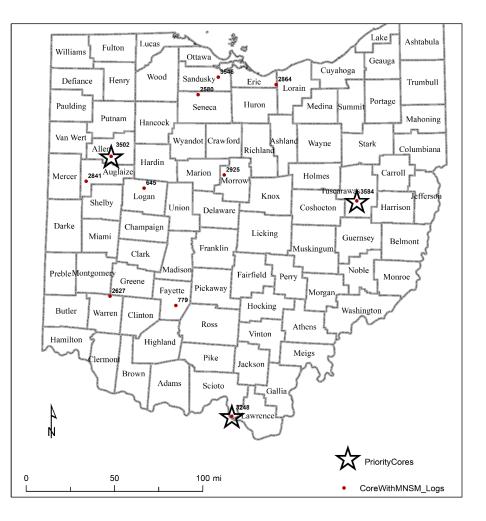
Microseismic and AE Studies



Figures modified from Tarokh et al. 2020

- Injection of scCO₂ into Berea sandstone
- Focus on changes of sandstone due to CO_2 injection and thermal treatment (at 300° C)
- AE sensors with 0.35 Hz to 25 kHz range, sampled at 400 kHz rate
- Most of the recorded AEs were in the 0.1 0.4 MHz range see the next slide
- Significant changes of sandstone properties due to CO₂ injection were seen: 10-15% decrease of strength, 100% increase of permeability, 10% increase of porosity, 2x increase of creep rate

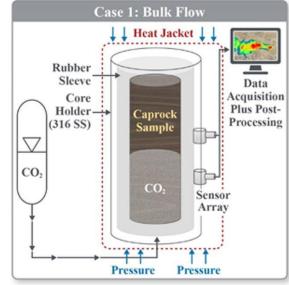
Haines Jumps

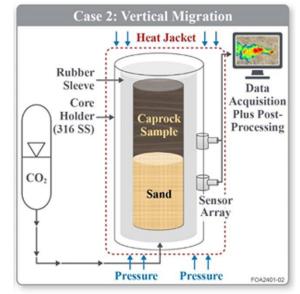

- Published literature reports Haines Jumps AE for waterreplacing air at ambient conditions
- These studies showed a number of low-amplitude, high frequency AEs
- It is expected that Haines jumps will have small amplitude and their frequency may be large which restricts the distance of measurement capability

Figures modified from Moebius et al. 2012

Core Selections

- 8 cores sample intervals
- Rock lithologies: Sandstone (reservoir), carbonate (reservoir), carbonate/shale (caprock)
- Reservoir Rocks
 - Porosity average = 8%
 - Permeability average = 16mD




Sensor Design and Lab Testing

Design and build a system that can saturate a reservoir core sample with brine followed by injection of supercritical CO_2 (sc CO_2) through the sample at various pressures and temperatures under the two injection schemes. This test will seek to:

- Establish sensor system validity in elevated pressure and temperature conditions
- Observe signal strength and attenuation, sensitivity of existing acoustic detection systems, and acoustic background from other processes
- Demonstrate, theoretically but quantitively, that the AE signals can be detected.

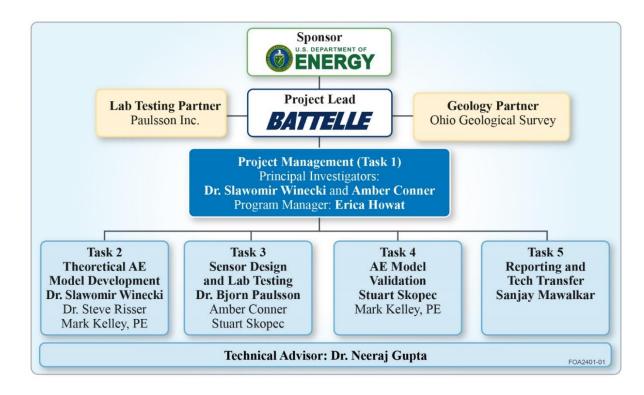
Advective Flow

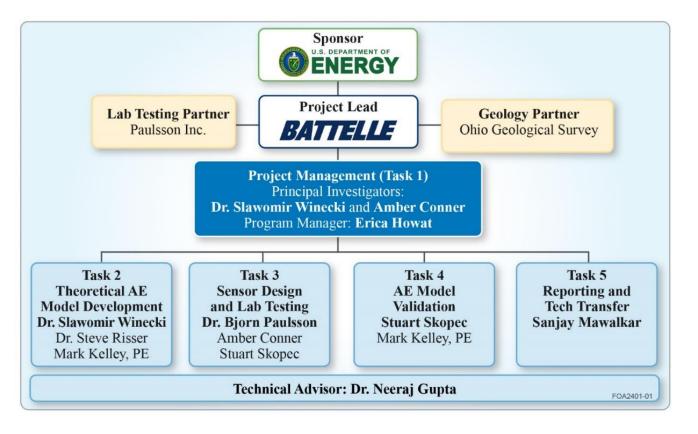
Diffusive Buoyancy-Driven Flow

Experimental Set Up Procurement Timeline

- March 14: Initial experimental set up order placed by Paulsson, Inc. with Control Group for June 6 delivery
- May 5 June 17: When it became likely that the initial order with Control Group would not be filled, Paulsson initiated a design review with DCI
- June 15: Paulsson cancels the Control Group Order due to vendor's inability to complete the order
- June 21: Paulsson placed the second order with DCI Corporation in Utah.
- September 27 October 11: Expected delivery window of the equipment, both purchased and borrowed components
- October 1 October 20: Install the equipment
- October 20 October 30: Test the equipment
- November 1: Begin acoustic emissions experiments
- November 30: End acoustic emissions experiments

Summary


- Literature search task was completed
- Cores have been selected and tested for petrophysical properties
- Theoretical Model is under development
- Experimental Set Up has been ordered from a second supplier and is awaiting delivery
- Next Steps:
 - Build experimental set up
 - Test generic core samples
 - Test selected seal and reservoir rock core samples


800.201.2011 | solutions@battelle.org | www.battelle.org

Organization Chart

Project Participants

Funding (DOE + Cost Share)

	Budget Period 1	Project Total				
Federal Share	\$640,075	\$799,354				
Cost Share Total	\$184,612	\$204,612				
Project Total	\$824,687	\$1,003,966				

Gantt Chart

Budget Period		BP1								BF	2	
fear		2021 2022				2023						
	FY2	Y21 FY22			FY23		FY24					
Task/Subtask	Q	4	Q1	Q2	Q3	Q4	Q1	Q2	Q	3 Q4	Q1	Q2
TASK 1 - Project Management and Planning			$\diamond \diamond$		♦	♦	♦	\diamond	♦	•	♦	
1.1 - Project Tracking and Controls								CA				
1.2 - Project Planning		Р	Т									
1.3 - Progress Briefings and Presentations												
TASK 2 - Theoretical Model Development					<							
2.1 - Model Conceptualization												
2.2 - Model Development												
2.4 - Task-2 Report												
TASK 3 - Laboratory Experiments					♦			$\diamond \diamond$				
3.1 - Sensor System Design			М									
3.2 - Caprock Sampling				•								
3.3 - Design of Experiments					M							
3.4 - Coreflooding and Data Acquisition						M	N	√I ♦	+			
3.5 - Task-3 Report												
TASK 4 - AE Model Validation											~	
4.1 - Lab-Scale Fluid Flow Modeling									/	•		
4.2 - Output Comparison												
4.3 - Technical Analysis for CCUS											•	
4.4 - Task-4 Report												
TASK 5 - Reporting and Data Transfer												
5.1 - Final Project Report												•
5.2 - Data Consolidation												D
5.3 - Tech Transfer												
 ◆ - Milestones ◆ - Deliverables P - Project Management Plan due T - Technology Maturation Plan Due M - Partner Meetings CA - Continuation Application D - Data to EDX 												

