Illinois Storage Corridor

DE-FE0031892

Dr Steve Whittaker
Illinois State Geological Survey / University of Illinois

US Department of Energy

National Energy Technology Laboratory

2022 Carbon Management Research Project Review Meeting

Presentation Outline

- Project Overview
- Carbon Capture Assessment
- Site Characterization Modeling Class VI components
- Summary

Project Team

Illinois Storage Corridor CarbonSAFE Phase III

Illinois Storage Corridor is a region with significant previous CCS-related activity

Project builds upon IBDP, CarbonSAFE Phases I and 2 and many other studies.

2 separate sites are being investigated to develop Class VI permits

One Earth Energy
Ethanol source: Mt Simon Storage Complex –
Possible Storage Hub (0.5 to 1.7 MTPA CO₂)

Prairie State Generating Company
Coal-fired power source: FEED study completed
Capture +8 million tons CO₂ per year

CarbonSAFE III

Bloomington-Normal, IL

IBDP

One Earth Energy

Danville, IL

he Illinois Basin

Pilot Capture Project

Ethanol FEED study

- Scope: CO₂
 Compression and Dehydration
 Facilities
 - 1,290 tonne/day (458,000 tonne/year, 25.6 MMscfd)
 - Inlet 0 psig,
 Discharge 1,500
 psig

Prairie State FEED

- The PSGC plant was commissioned in 2012 and uses pulverized coal and super critical technology to run at high temperatures and pressures.
- Two 800-megawatt power units produce over 12 million tons of CO₂ annually.
- Capture will be from 1 unit:
 - 25,760 short tons/day of CO₂
 - 6Mta + ~2Mta CO₂ from solvent regeneration

 FEED: Capture of this CO₂ will be based on the KM CDR Process™ CO₂ capture technology from Mitsubishi Heavy Industries (MHI).

Setting of Sites

Site #2 Site #1

OEE#1

Full Diameter Core:

- Ironton/Galesville 10ft
- Eau Claire 60 ft
- Mt Simon 180 ft

RSWC ~ 130 samples

Well: OEE #1 Porosity_RCA_SLB Reference (ft) 1:1000 Wet Weight IRON

Mt Simon Storage Complex

"Arkose Zone"

3D Survey at One Earth – 20,000 receivers: 7mi² over 40TB data

One Earth Energy 2D Seismic: Line 1

Structural framework model

OEE geocellular model

Heterogeneous model, storage units (MS+ Argenta) averaging 11%, 44 md

KTIM_Core model showing permeability

Unit	Thickness, ft	Porosity, %	Permeability, mD
Eau Claire	537	5	0.01
Upper MS	720	11	31
Middle MS	740	9	15
Lower MS	320	9	12
LMS Arkose	200	16	308
Argenta	460	12	18

Cell averaging 1000 ft x 1000 ft x 21 ft (250 ft x 250 ft x 21 ft around well) 1980 ft thick Mt. Simon, 460 ft Argenta, 537 ft caprock (Eau Clarie)

Dynamic Simulation

CO₂ Plume

- 3 well Injection at 1.5 Mt/yr each for 20 yr with perforation in Arkose zone (200 ft)
- Vertical extension: all CO2 remains within Lower Mt. Simon

AoR

- Threshold differential pressure for AoR determination is 86 psi
- AoR = 185 mi2 based on DP≥86 psi

TTU Legacy Wells Risk Assessment

Types of Wells within the AoR based on well construction details reported

I ILLINOIS Illinois State Geological Survey

Lively Grove #1 Well Results

- Well reached Total Depth of 5890' MD on August 11, 2021.
- Acquired whole core in the Maquoketa Shale, St. Peter Sandstone, and the Knox.
- Acquired extensive log suite for petrophysical, geomechanical, and reservoir analyses
- Well data confirms presence of potential injection reservoirs:
 - St. Peter Sandstone
 - 119' MD thick
 - **Everton Sandstone**
 - 85' MD thick
 - **Knox Dolomite Megagroup (includes Potosi and Oneota)**
 - 680' MD thick (top Oneota to base Potosi)
- Well data also confirms the presence of the primary seal Maquoketa Shale.

Petrophysical logs, lithology, and injection zones

- Acquired extensive log suite for petrophysical, geomechanical, and reservoir analyses
- Wireline Logs:
 - Surface caliper, Triple Combo, Sonic
 - Intermediate Triple Combo, Dipole Sonic, Images, Magnetic Resonance, Elemental Spectroscopy, Sidewall Cores, Temperature, Natural Gamma Ray Spectroscopy
 - Long String Triple Combo, Dipole Sonic, Formation Micro-Imager (FMI), Magnetic Resonance, Elemental Spectroscopy, Sidewall Cores (~50), Temperature, Natural Gamma Ray Spectroscopy, MDT Fracture Gradient
 - CH Intermediate Radial Bond Log
 - CH TD Section Radial Bond Log, VSP

PRAIRIE RESEARCH INSTITUTE

Lively Grove #1 Core and Sidewall Core of Storage Reservoirs

St. Peter Sandstone: Whole core (slabbed)

Ave. Porosity: 11%

Ave. Permeability: 68md

Everton Sandstone: Rotary sidewall core

Ave. Porosity: 10%

Ave. Permeability Review 122 md

Potosi Dolomite: Whole core

Ave. Porosity: 6%

Permeability of Knox vuggy intervals injection tested: 10,000-30,000md

Lively Grove Well Test Results: Knox 2

- Test interval: 1-2 ft (FMI log)
 - Vuggy/cavernous porosity
 - Good cement behind pipe
- Perf interval: 4505-4509 ft
- Tested high skin
 - Near wellbore lower perm k_{horz-nw}
 - Far wellbore very high perm k_{horz-fw}
- Suspected deep cement into cavernous porosity
 - Acid treatment
- Post-acid test
 - Very high perm

Derivative Analyses: kh = 35,000-50,000 md-ft

Knox 2	P _{frac} psi/ft	k _{horz-nw} (md)	k _{horz-fw} (Darcy)	Comment
Pre-acid	0.82-0.9	50-100	-	Low Res gauge
Post-acid	-	-	18-25	High Res gauge

Use 2 ft height for perm estimate

Maquoketa shale

Clayey lenses

Sandy Maquoketa shale

microfractures Clayey Maquoketa shale

	Formation	Index properties			
	Prairie State well	Well/ Depth	Facies	Dominant pore size d [nm]	Porosity ϕ [-]
ſ		PS1/ ≈ 2800 ft	Sandy	100	0.047
-	Maquoketa shale	PS1/ ≈ 3232 ft	Clayey	15	0.056
-	•	LG/≈ 2918 ft	Clavev	<4	0.050

Washington County/Prairie State Line 5

Additional 2D seismic acquired at Prairie State

- Acquired additional 2D seismic around Lively Grove well and existing seismic
- Characterize fault on Line 5 and possible fault/feature on Line 6
- Expand area to be studied for placement of initial CO2 injection wells.
- New seismic lines shown in red
 - Lines follow existing public roads, hence some lines have small bends/curves
- Completed acquisition on July 1, 2022

Sequence-stratigraphic Interpretation of St. Peter and Everton formations

 A sequence-stratigraphic framework was developed through the integration of sedimentological and petrophysical data.

• Sequence boundaries and system tracts were picked from well logs.

 Framework explains the distribution of the Everton Dolomite and the Everton Sandstone.

Feeds into Geostatic Models

St. Peter Sandstone Porosity and Permeability

St Peter/Everton: Model Description

- Nexus Simulation model: 45 x 45 miles
 - Based on geologic model, 3-D heterogeneity
 - Includes overburden/underburden formations
- Model Size
 - Grid cells: 1320' x 1320' areally
 - Cell thickness varies: 2.5 ft in St Peter and Everton
 - 182 layers (113 within St Peter and Everton)
 - Total blocks: 6 million
- Boundary Conditions
 - Infinite-acting aquifer on edges
 - Top and Bottom sealed (no flow)
- Injection Constraint
 - $P_{max} = 0.9 * 0.62 psi/ft*depth + 15$
 - Applied at top of perf interval
- Includes WWDW#1
 - Injects into St. Peter sandstone

Parmeter	Value
Initial Pressure	1,607 at 3,693 ft, MD
Resertoir temperat	98 °F at 3,693 ft, mD
Salinity	50,745 ppm
Fracture gradient	
St. Peter Ss	0.58 psi/ft
Everton Ss	0.66 psi/ft

Permeability: Cross-Section

Summary

- Extensive subsurface data has been collected for 2 separate sites for Class VI permit development
 - Well drilling
 - Well testing
 - 2D seismic
 - 3D seismic (at One Earth site)
 - Geomechanical analyses
- Legacy Well classification
- Risk analyses NRAP
- One Earth Class VI nearing completion
- Washington County site undergoing simulations of various well placement scenarios

