REX-CO₂: RE-USING EXISTING WELLS FOR CO₂ STORAGE OPERATIONS

Rajesh Pawar (LANL)

Carbon Management Project Review Meeting August 15-19, 2022

This project has received funding from ADEME (FR), Ministry of Economic Affairs and Climate Policy (NL), RCN/CLIMIT (NO), UEFISCDI (RO), BEIS (UK), and DOE (USA), under the EU Horizon 2020 programme ACT, Project No. 299681. The contents of this publication reflect only the author's view and do not necessarily reflect ERA-NET ACT's position. ERA-NET ACT is not liable for any use that may be made of the information contained here.

CO₂ storage in depleted oil and gas reservoirs

- ~205 billion tons storage capacity
 - Source: Carbon Storage Atlas, 2015
- Potential for cost saving through re-purposing of existing infrastructure – especially, offshore
 - ~900,000 active wells in US (Source: EIA)

- How do we assess whether oil/gas wells will meet CO₂ storage related requirements?
- Multiple wells will have to be assessed → time consuming and subject to inconsistency/incompleteness
- A structured & independent well screening process is required to help decisionmaking and stakeholder buy-in

Re-purposing oil and gas infrastructure is one of DOE FECM's strategic priorities to expand reliable CO₂ storage infrastructure

??

(Source - DOE FECM's Strategic Vision)

REX-CO₂

<u>Re-using Existing wells for CO2 storage operations (https://rex-co2.eu/)</u>

- International research project, funded through the ACT (Accelerating CCS Technologies) programme (<u>http://www.act-ccs.eu/</u>)
- <u>Objective</u>: Provide decision makers with mechanisms and information to evaluate re-use potential of existing oil and gas well infrastructure
- Six Countries: Netherlands, USA, France, UK, Norway, Romania
- 13 research partners; 4 stakeholders; 6 R&D organizations
- Duration: September 2019 August 2022

REX-CO₂ Project Organization

Well screening tool & workflow

Objectives:

- Develop a workflow for assessment of re-use potential of existing oil and gas wells
 - > Very limited information in the public domain
- Create a publicly available tool to enable assessment:
 - Useful for a wider set of stakeholders including oil/gas industry & CCS regulators

Minimum functional requirements for tool

- 1. Screening wells with currently available data
- 2. Universal and intuitive
- 3. Swift and consistent screening of portfolios of wells
- 4. Stand-alone, offline tool
- 5. Focus on well integrity during CO₂ injection and storage

Tool development – Workflow for well screening

- Workflow based on SoA practices, well design/well integrity standards & guidelines (including CCS wells):
 - ISO Standard 27914 (CCS-specific)
 - ISO Standard 16530 & NORSOK D010 (Oil & Gas Specific)
 - Regulatory requirements on CCS wells
 - Reference projects Peterhead/Goldeneye, Porthos P-18
- Assessment focused on five pillars:
 - > Out of zone injection risk
 - Integrity of primary well barrier
 - Integrity of secondary well barrier
 - Structural integrity
 - Material compatibility

Accelerating **CS** Technologies

REX-CO₂ tool - designed to be interactive

E) REX-CO2 Tool - D	×
	General Well Data Availability Reservoir Well Data The information from this tab is used in the Well Screening. Please start by adding a well and then filling in at least the name for that well. In case you have multiple wells that you would like to answer with the same responses, you may consider these as "well types" instead. 1. Well name: Well 1 Delete well
re-using existing wells <u>Well Screening</u> The well screening tool consists of a tool initialization and a well screening aspect. The first asks the user for inputs regarding the user's field and wells, while the second has the user complete a series of decision trees for each well and then provides the results of the assessment.	Current status: Producing Sidetracked: No Max deviation [*]: 2 Well name: Well2 Current status: Injecting Max deviation [*]: 1 Well3 Well3 Well3 Produce Test
Load Input Export to File Tool Initialization Well Screening	Current status: Monitoring Intended use: No reuse 4. Well name: Well 4 Current status: Monitoring Intended use: Monitoring Out of Zone Injection Structural Integrity Primary Barrier Well Integrity Secondary Barrier Material Compatibility Out of Zone Injection *An element is regarded as a well barrier element if it is (inspected), tested and verified as per applicable guidelines, standards and regulations. These describe required test interval, procedures and acceptance criteria (e.g. by centralization and logging). Open decision tree flow diagram
Cement Integrity Predictions (beta feature) The cement integrity predictions tool asks the user for a few inputs and then performs an analysis by running reduced order models for the specified parameters, producing a prediction of the caprock cement integrity. This component is still in development and is thus considered a beta feature. Cement Integrity Version: 1.0.1	1.7: Can the maximum anticipated pressure be lowered to ensure that it is lower than the shoe strength?
User Guide Acknowledgements References REX-CO ₂ tool will be publicly available – for info email to info	Prex-co2.eu Recommendation: red The information gives reason to assume the well may not be a good candidate to be reused for CCS due to risk of out of zone injection. Excessive remediation work is foreseen. An engineering and techno-economic assessment would be required to confirm.

Well screening results

Results of well screening are qualitative and are provided in the form of traffic light recommendations

Recommendation	Explanation			
	Only minor or no remediation could be expected			
	Moderate remediation or additional verification efforts could be expected			
	Severe remediation or a comprehensive risk management strategy on retrievable/replaceable items could be expected.			
	Severe remediation or a comprehensive risk management strategy on non retrievable/replaceable items could be expected.			
	Critical information is missing for the tool.			

REX-CO₂ screening results are meant to inform the first steps in the decision-making process which will subsequently involve detailed techno-economic assessment

Tool application: International case studies

Romanian case stu

Tool validated using previous assessments for P18-2 and Rousse

Case study name	Country	Onshore/offshore	Туре	Reference	
P18-2 (Porthos)	Netherlands	Offshore	Depleted gas field	Zikovic and van der Valk (2021)	
Vaccum	USA	Onshore	CO ₂ -EOR field	Chen (2021)	
Gullfaks Sør and Visund	Norway	Offshore	Oil fields	Grimstad et al., (2022)	
Bunter Sandstone Closure 36	υк	Offshore	Saline aquifer	Williams and Hoskin (2021)	
Hamilton	υк	Offshore	Depleted gas field	Williams and Hoskin (2022)	
Rousse	France	Onshore	Depleted gas field and pilot CO ₂ storage site	Guy and Cangemi (2022)	
Salonta	Romania	Onshore	Depleted gas field (abandoned)	Dudu et al., (2022)	

- Location: on-shore and off-shore
- Applications: Saline, depleted gas and CO₂-EOR
- Depths: 1400-5000 m
- Reservoir rock: sandstone and carbonate
- Reservoir type: gas field, oil field, saline aquifer
- Reservoir capacity: 37 280 Mt CO₂
- Number of available wells >100

Key findings from case studies

- Data/information needed for assessment can be limited
- Intervention required to re-purpose all wells
 - > A rig or workover is usually required to repurpose wells
 - Remediation can be achieved via coiled tubing interventions
- Primary barrier components and completions may be subject to cooling and may not be fit for re-use
- Structural integrity may be costly and technologically challenging to assess
- Quality of cement sheath and casing corrosion uncertainty
 - > New logs may be necessary
 - Dual-cased sections may be difficult due to logging challenges

Experimental investigations for re-using wells for CO2 storage

- Provide experimental data that describe how well degradation and well design influence potential re-use as CO₂ injectors
 - Bond strength between cement & steel
 - > Mechanical behaviour & integrity of cement-rock systems & interfaces
 - Downhole cement state of stress
 - Self-healing of leakage pathways
 - > Microbial remediation
- To define boundary conditions at which well integrity could fail and/or be remediated

DEXCO

Highlights of experimental investigations

- State-of-stress experiments and simulation studies indicate that well integrity is more robust to thermal and mechanical stresses than previously understood (Agofack *et al.*, 2021; Meng *et al.*, 2021).
- Cycling tests on downscaled wellbore samples illustrate that the ratio between the stiffness of cement and of rock formations is important.
- Higher pressure conditions during cement curing increases the mechanical strength of cemented interfaces (Rossillon *et al.*, 2022).
- Determining leakage rates that account for the stresses and mechanical behaviour of cement in well systems should be prioritised.
- Down hole microbial-induced carbonate precipitation (MICP) technologies have potential applications in geotechnical engineering including the remediation of oil and gas wells for CO₂ storage.

Regulatory and social aspects

Objective:

- Assess non-technical aspects that influence the implementation of well reuse application, from regulatory (legal) aspects to public acceptance
 - > Assessment of national legal frameworks
 - Workshops with regulators and other stakeholders
 - Guidelines for permitting process
 - Public perception and acceptance of well re-use for CCS

Possible gaps identified in national legal frameworks

LIFETIME STAGE/ MILESTONE/POLICY	POSSIBLE REGULATORY/POLICY GAP	FR	NL	NO	RO	UK	US
TRANSITION FROM PRODUCTION TO STORAGE	Procedure for postponing decommissioning of wells	0	(+)	0	0	0	+
	Simultaneous HC production and CO ₂ storage	0	+	+	0	Ο	+
	Arrangements during mothballing/hibernation	0	0	0	0	Ο	+
HIBERNATION (TEMPORARY ABANDONMENT)	Rules for mothballing and hibernation of wells	+	0	+	+	+	+
	Ownership of wells and costs	0	0	0	0	0	+
PERMITTING WELL RE-USE	Rules for permitting, monitoring and testing	0	0	0	0	0	+
POLICY FOR WELL RE-USE	Promoting re-use	0	(+)	0	0	+	0
	Incentivisation	0	0	0	0	(+)	0

+ = none, (+) = proposal/in consideration, o = possible gap

Summary & take-away points

Value of REX-CO₂:

- Fast turn-around time & systematic approach to assess large number of wells publicly available well screening tool
- Improved decision making, optimised capacity planning & cost savings when maturing CCUS opportunity
- Facilitate safe well re-use & CCS uptake project deliverables, results and recommendations on project public site

• Case studies:

- > Well Screening tool results in line with Engineering Assessments
- > Well intervention always required to re-purpose for CO₂ injection

• Experimental:

- > Provides insights in fundamental well integrity processes
- > A (larger) data-base with actual and historic downhole data for different well conditions is needed

• Permitting:

- > Major differences in permitting & lack of specific legislation for well re-use
- Regulatory barriers expected (not in US)
- > Data sharing & early discussion between operators, regulators and future CO₂ storage operators should be encouraged
- Recommendations for re-using existing wells Report D5.1 (available on project web site)

British Geological

Survey

Thank you for your attention

vallourec

https://www.rex-co2.eu

Accelerating CS Technologies

