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Benefit to Program
Monitoring, Verification, Accounting and Assessment

Provide information on physical and
geo-chemical changes in reservoir,
ensuring CO, storage permanence.

. . & Remote Sensing
Ground-truth behavior of fluids, CO, fJ/
transport properties to constrain | ‘
reservoir simulation models,
predicting CO, storage capacity &
designing efficient MVA programs.
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FEAA-045 Timeline

< 2009
2009-2015

2015-2022

2020-2022
2015-2022

Frio Brine pilot site tracer tests

Cranfield CO, storage project tracer tests and

measurements (with SECARB)

Enhanced models integrating tracer results with

CO, storage reservoir simulations
Chester-16 reef simulations (with MRCS

Improved perfluorocarbon analytical met
for tracer tests

)
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Tracers for Evaluating CO, Storage in Brine Reservoirs

Migration, structural, and
stratigraphic trapping of
scCO,

Residual trapping in
rock pores

Dissolution of CO, into
formation brine

Chemical trapping of CO,
through fluid-rock
geochemical reactions

Advection, Dispersion,
Mixing & Dilution

Caplillary Forces

Diffusion, Partitioning

Dissolution, Precipitation,
Water-Rock Interactions

CO, isotopes

Methane (CH,)
Perfluorocarbons (PFTs)
Noble gases

(As above)

Water isotopes
CO, isotopes
pH

DIC, Alkalinity

CO, isotopes
Cations, Sr isotopes
Anions



Cranfield, MS
Detailed Area of Study ‘, _ |
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Carbon Isotopes (13C/*°C) of Injected CO, Gas from
Jackson Dome Show Good Mixing with Tuscaloosa CO,
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Simple two-component fluid mixing dominates at the DAS site
No obvious evidence of CO, reaction with reservoirrock carbonates




Modeling of O isotope shifts in CO,
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Conservative Perfluorocarbon Tracers (PFTs)

GC-ECD analysis of 20-30fmoles
= Non-reactive, non-toxic, inexpensive and (5-10pg) each PFT in air

stable to 500°C
= Several PFTs can be quantified in a single g2
analysis =
= Detectable at pg-fg levels (fmoles) a """
= Different PFT “suites” (PMCP, PMCH, PECH, :
PDCH, PTCH), and SFs, assess multiple 0 5 10 15 20
breakthroughs o Time (min)
— flow regime indicator 0o
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Time

31
33
75
269
436

PFT

PMCH
PTCH

PECH
SFe

PDCH
PMCH
PTCH

2009 Campaign PFTs at F2

8x10°7
E‘ O
‘;’ .’ Pressure e F2SF6
c 6"10-7 4 , Front
S P K s F2PMCH
o ®e
£ 4x107 $ - v F2PECH
6 F2 PTCH
S 2x107
|_
LL
o

200 400 600 800
Experiment Hours



2010 Campaign PFTs Relative to PTCH
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PFTs Present After 5 Years of Experiment!

« Long-term diffusive talil
(50 X longer than Frio)

« Tracer reservoir in F3 vicinity
(>20,000 hr of previous inactivity)

« Revealed differential transport of
SFg;and PECH (and others)

PECH Timecourse (Well CFU31-F3)
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PECH (peak area units)

100
100

2009 2010 2015
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Experiment Hours

PFTs Observed as Peak Area Units for the F3 Observation Well

PFT F3 Pre-Vent 01-13-15 | F3 PostVent 01-23-15 | F3 Post Vent 01-26-15
SF6 185,245 0 0
PMCP 571 173 37
PMCH 1079 428 121
PECH 2017 1233 377
PTCH 541 376 107
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. essons Learned

Long-term experiments are important (long-tail)
Carbon isotopes are valuable for mixing models
Flow paths evolve in the reservoir

Sensitive tracer detection is critical

Suites of tracers are essential for interpreting flow

Multiple suites of tracers are required for monitoring with
repeated Injections

Models & simulations help to interpret tracer results
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Modeling CO, Injection at the Cranfield Pilot Site

Detailed Area of
Study

A BT RN =

Monitoring

L
31-F2 ST31F3 0

Numerical Modeling of Reactive Transport

Better interpret Cranfield field data

Predict long-term evolution of fluids & formation
Simulate critical CO, transport and reaction processes
Apply lessons learned to other projects

Extracted from > 60 million element model by UTBEG
Hosseinietal., IJGCC (2013)

e 155x 195 x 24 m3, inclinedin x and y

64 x51x 79 =257,856 unstructuredgrid cells,

» F2and F3 well locations (70, 100 m) from Ajo-Franklin
etal., IJGGC, 2013

» Petro-physical properties for 8 facies

/ observation well !

F1 F3

/

injection well!
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Modeling Tools

« Unigue combination of capabilities in Osures:

— Higher-order finite element (FE) methods for flow and transport: allow
unstructured grids, tensor permeability, discrete fractures, heterogeneity

— Low numerical dispersion (e.g., resolves small-scale onset of instabilities)

— Cubic-plus-association (CPA) equation of state (non-ideal) phase behavior
modeling of water, CO,, hydrocarbons, tracers (capture, e.g., competitive
dissolution and brine compressibility)

— Fickian diffusion with self-consistent composition + T + p -dependent full
matrix of diffusion coefficients for multicomponent multiphase fluids

— Capillary-driven flow with composition + p -dependent surface tension

— Reactive transport by coupling to IPHREEQC geochemistry (2019-2020) and
PhreeqcRM (2020-2021), which is faster / parallelizable.




Modeling of pure CO, injection into brine at Cranfield

Excellent match to observed pressure response and CO, breakthrough times in observation wells.

Pressure response in injection well CO, migration in 2009 (left) & 2010 (right)
(Soltanian et al., I/GGC 2016) Time = 27.9 days Time = 176.8 days
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Simulating PFT Injection Campaign
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Conclusions from Simulations

Qualitative agreement with previous studies, but closer to field data due to
high-resolution static model, higher-order FE methods, and robust physics

Agreement (mostly) on static model and wettability

However, pressures at highest rate and CO, breakthrough in F3
overestimated in all models

Most likely cause: missing fluvial conduits of flow
Tracer breakthrough in F3 before F2 suggests the same
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Modeling of the exsolution of methane
dissolved in formation brine
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012

Reactive transport by coupling to IPhreeqgc
and PreeqcRM interfaces, only single-phase
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Two-Phase Geochemistry

Measured pHchangein formation brine during CO2injection

M F2 hydrotest
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Two-Phase Reactive Transport

Modeling of the pH change in formation brine during CO, injection

pH Distribution CO, injection Z,,

25 275 3 325 35 0050 0.10 015 020 025 030 035 040 045 0.50

Time:8.5 H'E B 'H =
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Chester 16

New synergistic collaboration developed with Battelle to model CO,
transport in complex Chester 16 reef system (MRCSP)
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Chester 16

 |Industry-standard is logically Cartesian corner-point grids.
« For complex geometry, like domes, many dead and pinched cells.

« Advantages of unstructured, e.g. tetrahedral, grids
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In jectlon Days CO:zInjected
Date Range |“l ected Target Formation (MT)
804
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Chester 16

« Multiple injection and ‘soak’ periods

* Model CO, injection into water at BHP of
130 bar and T = 104 F where CO, is

supercritical
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Chester 16

* Preliminary modeling of CO, injection (higher-order DG)
« Two viewing angles, 1 year of injection, 1 mol% CO, contours (and perm.)




Project Summary (Task 1)

— Modeling of CO,, CH,, brine, and perfluorocarbon tracers at
Cranfield

— Fundamental analyses of solubility trapping (mixing and spreading
of dissolved CO,)

— Initial implementation and benchmarking of coupled flow and
reactive transport with Osures+iPhreeqc/PhreeqcRM

— Investigation of multiphase flow and reactive transport at Cranfield
— Modeling of independent Chester 16 field site

— Technology improvements (specifically parallelization / HCP)
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Task 2. Improving PFT Tests

— Develop methods to improve the analysis of perfluorocarbons in a
hydrocarbon-rich matrix, found in many EOR and EGR monitoring well
samples.

— Detect lower concentrations Iin gas samples
— Reduce sampling frequency
— Simplify sample collection, transport and storage

— BNL researchers (Senum et al) in the 1980’s sampled PFTs with
capillary adsorbent tracer samplers (~60 mg AMBERSORB ™)

— Concentrates PFTs from a large gas volume on a single sorption tube
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No significant interference for PFTs
diluted Into gas matrices and analyzed
directly by GC-ECD
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Decreased Efficiency of PFT Analysis
by Sorption Tube Sampling
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Increased PFT breakthrough to downstream tube
INn the presence of hydrocarbons

Ambersorb Tube 1 Ambersorb Tube 2
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PFTs in CO,

60 Polymer PMCP
GCB“ CMS Polymer CMS GCB PMCH
m CMS
[ BN PECH
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Five different types of sorbent tubes loaded with PFT standardsin CO, were analyzed using thermal desorption
with GC-ECD analysis. Measurements were performed on triplicate samples.
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PFTs in CO, + Diesel Volatiles
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Air Toxics tube contains ~2:1 GCB:CMS.

Inverse Air Toxics tube contains~1:3 GCB:CMS. 32



New Sorbents Reduced Breakthrough

Alternative sorbents trapped more PFTs than Ambersorb with CO,, & diesel volatiles

PFTs —p| Sorbent Tube 1 »  Sorbent Tube 2
Sum of both tubes B Carboxen 569
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Improved Sensitivity and LOD with
Carboxen 569 Sorbent Tubes
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Summary (Task 2)

= Hydrocarbons substantially reduce the efficiency of
perfluorocarbon adsorption to AMBERSORB ™.

= The most volatile PFT (PMCP) may not be adsorbed in the
presence of HCs using some sampling tubes.

= Larger bed volumes of high specific surface area carbon
molecular sieve sorbents or mixed beds significantly and
substantially improves detection.

= Carboxen 569 Is a recommended replacement for AMBERSORB
In sorbent tubes for PFT sampling.

= PFT response factors (sensitivities) vary significantly, but LOD is
similar and limited by background contamination.
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APPENDICES
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| essons Learned

 Critical uncertainties in modeling/predicting two-phase migration of
supercritical CO, into brine-saturated formation:
— Subsurface heterogeneity

— Relative permeability & capillary pressure relations: especially facies-dependence.

» Convective mixing of dissolved CO, relatively insensitive to multimodal
facies heterogeneity when porosity and permeability are correlated.
Simple scaling laws in terms of formation/fluid properties apply broadly.

* Rock-fluid reactions likely modest on short time-scales but may affect
long-term storage. Predictions require costly (parallelized) numerical
modeling & further research.
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Synergies

Established collaborative simulation opportunities with MRCSP regarding
complex reef systems.

Open to other partnerships, incl. future large-scale projects.

Addressing priority research directions:

— PRD S-1: Advancing Multiphysics and Multiscale Fluid Flow to Achieve Gton/yr Capacity

— PRD S-2: Understanding Dynamic Pressure Limits for Gigatonne-scale CO, Injection

— PRD S-6: Improving Characterization of Fault and Fracture Systems

Collaborative PFT sorbent testing in hydrocarbon-rich matrices. Planned GC-MS
experiments with NETL RIC.

Sharing best practices for tracer analysis

— Potential applications for CCUS Research Priority areas:
Locating, Evaluating, and Remediating Existing and Abandoned Wells &
Wellbore leakage
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