Advancing Characterization of Faults Through Deployment of Novel Geophysical, Geochemical and Geomechanical Technologies at the San Juan Basin (SJB) CarbonSAFE Site

DE-FE0032064

William Ampomah, PhD

Section Head-Research Engineer/ Assistant Professor

New Mexico Tech

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Project Participants

SAN JUAN BASIN

Carbon SAFE

- NMT
- Dr. William Ampomah
- Dr. Sai Wang
- Mr. George El-kaseeh
- Mr. Luke Martin
- Dr. Alex Rinehart
- Dr. Jiawei Tu
- Graduate Student
- University of Utah
- Prof. Brian McPherson
- Dr. Kevin Lynn McCormack
- Silixa LLC
- Mr. Thomas Coleman
- Dr. Carlos Maldaner
- Dr. David Podrasky

UNIVERSITY of UTAH

- LANL
 - Dr. Lianjie Huang
 - Dr. Jeffrey Hyman
 - Dr. Zhou Lei
 - Dr. Rajesh Pawar

Contractors

- Dr. Tom Bratton
- AHS
- Dr. Michael P. Smith
- Dr. Christopher Smith
- Mr. Patrick Gordon

Project Overview

- Funding Profile
- Project Performance Dates:
- 07/01/2021-06/30/2024

	BP1		B	P2	B	23	Total				
	07/01/21 -	06/30/22	07/01/22 -	- 06/30/23	07/01/23 - 06/30/24						
	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Cost Funds Share		DOE Funds	Cost Share			
NMIMT	332,640	32,389	169,139	43,195	156,146	28,481	657,924	104,064			
University of Utah	54,419	13,608	26,449	6,612	14,132	3,530	95,000	23,750			
Silixa LLC	246,970	140,315	-	23,800	-	23,800	246,970	187,915			
LANL	79,996	-	80,008	-	39,996	-	200,000	-			
Fotal (\$)	714,025	186,312	275,596	73,607	210,274	55,811	1,199,894	315,729			
Fotal Cost Share %		20.7%		21.1%		21.0%		20.8%			

SAN JUAN BASIN

Carbon SAFE

Project Overview: Objectives

- The main objective is to carry out field deployment of an integrated suite of costeffective and novel geophysical, geochemical, and geomechanical technologies for detection and characterization of faults and fractures.
- The project will deploy these technologies at the San Juan Basin (SJB) CarbonSAFE Phase III site
- To permanently deploy an integrated behind casing fiber optic sensing system, including Distributed Strain Sensing (DSS), Distributed Temperature Sensing (DTS), and a high sensitivity Distributed Acoustic Sensing (DAS) system.
- To employ Rock Volatile Stratigraphy (RVStrat), a novel geochemical technology that uses drill cuttings and core, to locate faults (including aseismic faults) and estimate their sizes and orientations.

Project Overview: Objectives

- To detect faults near and more distant from the well bore, including faults in the crystalline basement rock, using a novel multi-scale U-Net machine learning method to evaluate 3D surface seismic and 3D VSP images.
- To integrate proposed technologies to develop advanced rock physics and coupled thermo-hydrodynamic-mechanical models in combination with the Monte Carlo method, to determine state of stress on each mapped fault and estimate long-term slip potential and/or maximum fault slip potential resulting from large-scale CO₂ injection.

Our Approach

Milestones

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Verification method
1.0	Project Kick-off meeting		Attend Meeting
2.2	Deployment of DAS/DSS/DTS behind casing in the SJB	12/31/2022	Report to DOE
	CarbonSAFE stratigraphic well		
2.4	Drilling cuttings, core and legacy core cuttings assembled	10/31/2021	Report to DOE
3	Seismic analysis detecting aseismic and basement faults	9/30/2022	Report to DOE
4	RVstrat approach detecting and characterizing faults	7/31/2022	Report to DOE
5.1/5.2	Wellbore analysis detecting and characterizing geological features such as faults	3/31/2022	Report to DOE
5.3	Determination of principal stress, pore pressure within storage complex	1/31/2023	Report to DOE
6.1/6.2	Compilation of fault information and baseline seismicity within storage complex and basement	9/30/2023	Report to DOE
6.3	Fault slip analysis	11/30/2023	Report to DOE
7.1	Completion of static model for numerical simulation	2/28/2023	Report to DOE
7.3	Numerical modeling for hazard assessment	4/30/2024	Report to DOE

7

Carbon SAFE

Storage Complex @ San Juan Basin

SJB CarbonSAFE Project Facts

Key Project Facts

- Retrofit the San Juan Generating Station with 6-7 MMT/yr CO₂ capture technology, locally store within San Juan Basin.
- Characterization target located ~17 miles from SJGS

Characterization Plan

- Drill characterization well, perform injectivity tests on Private land
- Perform suites of laboratory experiments and numerical models
- Purchased 3D seismic, acquire 3D VSP

SJB CarbonSAFE Stratigraphic Well- Fiber Installation

Key Notes

Completion to Class VI Standard

The strat well even though permitted as class II, we plan to complete it to a class VI standard for potential future use

Fiber Optic Line

Fiber optic line will be attached, along with downhole gauges, to the outside of the 5-1/2" casing to monitor the stress, pressure and temperature profiles along the wellbore.

Well Name: SJB CarbonSAFE #1 Objective formation: Entrada County, State: San Juan County, NM Surface Legal Location: 12-31N-12W Surface Lease Line Footage: TBD API #: TBD

Note: #-ft - #-ft: top - thickness

Rig: TBD Ground Elevation: 6,207-ft RBK Elevation: 6,237-ft TD: 8,800-ft MD: 8,800-ft Useable-quality GW: ~1,000-ft

Silixa Distributed Optical Fiber Technology

Downhole Fiber Optic Cable – A825 Outer Sheath

* Drawing not to scale

Optical Details

Fiber Type	Mult	imode	Single	emode	Constellation		
Fiber Count		2		2	1		
Core Diameter	50	μm	9	ım	9 µm		
Cladding Diameter	dding Diameter 125 µm		125	μm	125 µm		
Wavelength	850 nm	1300 nm	1310 nm	1550 nm	NÂ		
Maximum Attenuation 3.2 dB/km 1.4 dB/Km		0.72 dB/Km	0.62 dB/Km	NA			

Scheduled Data Acquisition- Fiber Optic

The DTS, DSS, and DAS data acquisition plan includes:

- Mobilization 1 Fiber optic cable deployment
 - Measurements during fiber optic cable deployment to assess integrity of optical fibers using a portable optical time-domain reflectometer (OTDR).
 - DSS and DTS surveys after the cable reaches total depth and before the cementation process to assess the hole temperature profile, which can be used to inform the cement mixture.
 - DSS and DTS surveys during and after the cementation process to assess the cementation progress, final cement level, and cement curation process, which can be informative about the thermal and hydraulic properties of the formation.

Scheduled Data Acquisition- Fiber Optic

The DTS, DSS, and DAS data acquisition plan includes:

- Mobilization 2 Baseline
 - Strain (DSS) baseline
 - Temperature (DTS) baseline
 - Acoustic (DAS) baseline (ambient noise log)
 - Seismicity baseline
 - Continuous monitoring during DFIT using DTS, DSS, DAS

LANL Multiscale Connection-fusion U-shaped Convolutional Neural Network (MCFU)

Fault Segmentation from Seismic Image via MCFU

Technology Advantages

- Improved in Faults Detection
- Reliable Large-scale Fault Mapping
- Enhanced Cost Efficiency

Machine Learning Fault Detection: Preliminary Result

Machine learning fault detection on a depthconverted 3D volume of a 3D prestack time migration image showing that there is no major fault at the project site.

3D Surface Seismic, Before and after Reprocessing

AHS Rock Volatiles CCS Well Site Evaluation

Cuttings Sampling for AHS Analysis

Highlight Wells	Data Pos	sted Along Borehole	CarbonSafe					
CarbonSafe LOC (Public)	(Tops: Dakota)	rakota) Tima, Depih		Carb	loondale			
		1	Project: San Juan Basin Cart		Basin Carbo	onSafe		
			Project Location:					
				Scale	1:221147			
			0	18429	36656	55287 ft		
			Grid: Dakota Deep wells with Entrada toos			hat		

4 Legacy Wells' Cuttings Analyzed

SJB Fluid Migration from Legacy Cuttings Volatiles

Advanced Hydrocarbon Stratigraphy

- Gentle Cryo-Trap Volatiles Analyses, Maps Fluid Migration From Legacy Drill Cuttings.
- Migrated Oil and Condensate Occur as Data Spikes
- No Relationship to Stratigraphy or Lithology,
- Potential Fracture Migration.

San Juan Basin Geological Modeling

• More than 2200 well tops so far

SJB CarbonSafe Geomodel

- Grid cells (nl x nJ x nK): 322 x 321x 29
- Total number of grid cells: 2,886,660
- X (ft.): 235356.12 ~ 555976.40 ->320620.28 ft. (60.72 miles)
- Y (ft.): 1957320.33 ~ 2278308.71-> 320988.38 ft. (**60.79** miles)
- CRS: NM-W:NAD27 New Mexico State Planes, Western Zone, US Foot

Layer No.	Formation				
1	Dakota				
2					
3					
4	Brushy Basin				
5					
6					
7					
8					
9	Salt Wash				
10					
11					
12					
13					
14	Bluff				
15					
16					
17					
18	Summerville				
19	Summervine				
20					
21	Todilto				
22	Tounto				
23					
24	Entrada				
25	Lintidud				
26					
27					
28	Camel				
29					

San Juan Basin Geology

A) SSTVD structure map of the topo of the Honaker Trail Formation with locations of structural sections X, Y, and Z B) Cross sections X, Y, Z (10x vertical exaggeration) with key formation grids visible 23

In previous work, we identified the seismic risk using a single planar model

McCormack et al. (2022)

We are improving our understanding of risk through discretization

The search radius is placed at many locations

Ē

A planar regression elucidates the discrete fault patch

We ran the analysis for three faults in the case of both discretization and a single planar model

Median values for each point in the fault model

All the realizations for each point in each model

Ę

We are formulating the problem in a Bayesian framework

We want to understand the Impact discretization (r) has on Coulomb Failure Function (CFF)

Summary Slide

- The project management team completed the technology maturation plan and received the approval from the DOE.
- The downhole Fiber Optic cable was successfully manufactured and the clamps utilized during the cable installation was secured.
- Over 1,161 well cuttings from four legacy wells close to the proposed SJB CarbonSAFE III site has been identified and analyzed geochemically through the RVStrat technology.
- The concepts and mathematics involved in viscoplastic stress relaxation theory was constructed to interpret the log data for fault detection and characterization.
- The preliminary analysis using machine learning techniques did not identity any major fault within the current 3D seismic volume.
- The faults orthogonal to the Hogback Fault had been interpreted by the Monte Carlo Mohr-Coulomb simulations.
- The fault polygons for the hogback fault system as well as other basement faulting system in the area has been identified and the static geological and hydrodynamic flow model was completed.
- The training on advanced modeling tools, including dfnWorks, Hoss, and Amanzi, for the hazard assessment have been completed.

Next Steps- DfnWorks

Next Step- Coupled Modeling Workflow

Acknowledgements

The project would like to thank DOE for the award opportunity through DE-FE0032064 and our partners. We would like to acknowledge additional support from San Juan Basin CarbonSAFE project.

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Proposed Schedule

Taska		Project Year 1				Project Year 2					Project Year 3					
	TASKS	78	9 10 11 12	! 1	23456	78	9 10 11	12	1 2 3 4	4 5	6 7	89	10 11 1	2 1 2	3 4	56
Task 1.0	Project Management and Planning															
Subtask 1.2	Technology Maturation Plan															
Task 2.0	Deployment of Field Technology/Data Collection															
Subtask 2.1	Review of Well Design															
Subtask 2.2	Deployment of the DSS/DAS/DTS Fiber Optic Cable		M													
Subtask 2.3	Data Acquisition															
Subtask 2.4	Cutting Sample Collection and Pretreatment			Μ												
Task 3.0	Seismic Analysis for Fault Detection															
Subtask 3.1	Machine Learning Fault Detection of Surface Seismic Image							<u>M</u>								
Subtask 3.2	Machine Learning Fault Detection of VSP Images and VSP-DAS Ima	ges														
Subtask 3.3	Comparison with Industry Standard Seismic Fault Detection															
Task 4.0	Geochemical Analysis for Fault Detection and Characterization							М								
Subtask 4.1	Historical Sample Analysis															
Subtask 4.2	Volatiles Identification and Quantification															
Subtask 4.3	Bulk Mechanical Strength Measurements															
Subtask 4.4	Integration of well log and RVstrat Analysis															
Task 5.0	weilbore Analysis for Fault Detection and Characterization															
Subtask 5.1	Fault and Fracture Detection using Wellbore Images				M											
Subtask 5.2	Fault and Fracture Detection using BARS															
Subtask 5.3	DFIT Analysis to Quantify Minimum Horizontal Stress, Pore Pressure, and Matrix Permeability									М						
Subtask 5.4	Viscoplastic Minimum Principal Stress Estimation															
Subtask 5.5	Strain Modeling with Finite Element Analysis															
Task 6.0	Fault Slip/Activation Analysis															
Subtask 6.1	Compile Stress Information											М				
Subtask 6.2	Compile Fault Information												М			
Subtask 6.3	Compute Coulomb Failure Function															
Task 7.0	Integrated Modeling for Hazard Assessment															
Subtask 7.1	Geological/Static Modeling								М							
Subtask 7.1.1	Geologic Structural and Stratigraphic Framework															
Subtask 7.1.2	3D Hydrodynamic and Mechanical Model															
Subtask 7.1.3	Fracture Modeling															
Subtask 7.1.4	Fault Transmissibility Modeling															
Subtask 7.2	Advanced Back Diverse Modeling															
Subtack 7.2	Advanced Rock Physics Modeling															_
Sublask 7.2.1	Develop combined real religion model															
Subtask 7.2.2	Develop combined rock physics model															
Subtask 7.3	Advanced Numerical Modeling															
Subtask 7.3.1	Hydrodynamic Modeling														М	
Subtask 7.3.2	Coupled Thermo-hydrodynamic-Mechanical Modeling															

Outer Sheath: A825 Alloy Performance in Comparison to 316SS

- Primary protection of fibers provided by outer sheath, 0.25" OD, 0.035" thick A825 Alloy continuous tube (sometimes called Incoloy)
- Developed for high corrosion resistance at high T, particularly low/high pH solutions & chloride stress corrosion (*significantly higher performance than 316SS*).
- High performance in high T environment, less than a 5% tensile strength reduction at 500 C. Considerably stronger than 316 SS.

Resistance to Chloride Stress Corrosion Cracking

Test (U-Bend	Alloy								
Samples)	316	SSC-6MO	825	625					
42% Magnesium Chloride (Boiling)	Fail	Mixed	Mixed	Resist					
33% Lithium Chloride (Boiling)	Fail	Resist	Resist	Resist					
26% Sodium Chloride (Boiling)	Fail	Resist	Resist	Resist					

Mixed - A portion of the samples tested failed in the 2000 hour of test. This is an indication of a high level of resistance.

[data from Sandmeyer Steel Corp & Special Metals Inc.]

Resistance to Laboratory Sulfuric Acid Solutions

Alloy	Corrosion Rate in Boiling Laboratory Sulfuric Acid Solution Mils/Year (mm/a)							
	10% 40% 50%							
316	636 (16.2)	>1000 (>25)	>1000 (>25)					
825	20 (0.5)	11 (0.28)	20 (0.5)					
625	20 (0.5)	17 (0.4)						

