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Project Overview

— Funding Profile
— Project Performance Dates:
07/01/2021- 06/30/2024
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Project Overview: Objectives

The main objective is to carry out field deployment of an integrated suite of cost-
effective and novel geophysical, geochemical, and geomechanical technologies for
detection and characterization of faults and fractures.

The project will deploy these technologies at the San Juan Basin (SJB) CarbonSAFE
Phase lll site

To permanently deploy an integrated behind casing fiber optic sensing system,
iIncluding Distributed Strain Sensing (DSS), Distributed Temperature Sensing (DTS),
and a high sensitivity Distributed Acoustic Sensing (DAS) system.

To employ Rock Volatile Stratigraphy (RVStrat), a novel geochemical technology that
uses drill cuttings and core, to locate faults (including aseismic faults) and estimate
their sizes and orientations.



Project Overview: Objectives

» To detect faults near and more distant from the well bore, including faults in the
crystalline basement rock, using a novel multi-scale U-Net machine learning method
to evaluate 3D surface seismic and 3D VSP images.

* To integrate proposed technologies to develop advanced rock physics and coupled
thermo-hydrodynamic-mechanical models in combination with the Monte Carlo
method, to determine state of stress on each mapped fault and estimate long-term
slip potential and/or maximum fault slip potential resulting from large-scale CO,
Injection.



Our Approach

Field Deployment and Data collection: DAS, DSS, DTS
Existing Data: Seismic data, BARS, well Logs, Drilling

cuttings, Core, DFIT,

Machine Learning Seismic Fault
Detection

Geochemical Analysis for fault
detection and characterization

Wellbore Analysis for fault
detection and

Characterization

l

1

Y

Fault Failure/Slip Analysis

Advanced Rock Physics Modeling
Static/ 3D Mechanical Earth Model (MEM)
Fault/Fracture Property Assignment
Hydrodynamic Model

Modeling

v

Integrated Modeling for Hazard
Assessment




Milestones

Task/
Subtask [Milestone Title & Description Planned Completion Verification method
Date
1.0 [Project Kick-off meeting Attend Meeting
2.2  |Deployment of DAS/DSS/DTS behind casing in the SJB 12/31/2022 Report to DOE
CarbonSAFE stratigraphic well
2.4 |Drilling cuttings, core and legacy core cuttings assembled 10/31/2021 Report to DOE
3 [Seismic analysis detecting aseismic and basement faults 9/30/2022 Report to DOE
4  |RVstrat approach detecting and characterizing faults 7/31/2022 Report to DOE
5.1/5.2 [Wellbore analysis detecting and characterizing geological features 3/31/2022 Report to DOE
such as faults
5.3 [Determination of principal stress, pore pressure within storage 1/31/2023 Report to DOE
complex
6.1/6.2 (Compilation of fault information and baseline seismicity within 9/30/2023 Report to DOE
storage complex and basement
6.3 [Fault slip analysis 11/30/2023 Report to DOE
7.1 |Completion of static model for numerical simulation 2/28/2023 Report to DOE
7.3 [Numerical modeling for hazard assessment 4/30/2024 Report to DOE




SAN JUAN BASIN

Corbon Storage Complex @ San Juan Basin
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Carbon SAFE SJB CarbonSAFE Project Facts

Key Project Facts

* Retrofit the San Juan Generating Station with 6-7 MMT/yr
CO, capture technology, locally store within San Juan

Basin.

 Characterization target located ~17 miles from SJGS

Characterization Plan

* Drill characterization well, perform injectivity tests on Private

land

* Perform suites of laboratory experiments and numerical

models
 Purchased 3D seismic, acquire 3D VSP

Well Data
CarbonSafe
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SJB CarbonSAFE Stratigraphic
Well- Fiber Installation

Key Notes

« Completion to Class VI Standard

The strat well even though permitted as

class Il, we plan to complete it to a class VI
standard for potential future use

* Fiber Optic Line

Fiber optic line will be attached, along with
downhole gauges, to the outside of the 5-
1/2” casing to monitor the stress, pressure
and temperature profiles along the wellbore.

Well Name: SIB CarbonSAFE #1

Objective formation: Entrada

County, State: San Juan County, NM
Surface Legal Location: 12-31N-12W
Surface Lease Line Footage: TBD

API#: TBD

@ approx. 100°

17-1/2"" Surface hole
13-3/8 surface casing

@1,500-ft

L-80-231b/ft
@3,000-ft

12-1/4"" Int. hole
9-5/8"" Int. casing
@5.500-ft

13Cr-P110 - 231b/ft
5,000-8.800-f

Fiber optic
cable/sensor

8-3/4"" prod. hole
5-1/2 prod. casing
@8.800-ft

Rig: TBD

Ground Elevation: 6,207-ft
RBK Elevation: 6,237-ft

TD: 8,800-ft

MD: 8,800-ft

Useable-quality GW: ~1,000-ft

String | Hole Casing | Weight, | Grade | Con. Depth,
Size, OD, in | Ib/ft ft
in
Cond. 30 20 94 J-55 Welded ~100
Surf. 17-1/2 | 13-3/8 545 J-55 BTC 1.500
Int. 12-1/4 | 9-5/8 40.0 L-80 BTC 5,500
Prod. 8-34 5-1.2 23.0 L-80 BTC 5,000
13Cr- | Premuum 200
Prod. 8-3/4 5-172 230 P110 BTC -
8.800
Tubing 27/80D 7.8 L-80 BTC 8.200

Pt. Lookout top - 5,108-ft — 169-ft

Bluff top - 7,971-ft — 127-f
Todilto TD = 8.180-ft

Permanent Packer; TD = 8.150-ft; min_ pull = 45,000 Ibf.
Tubing TD = 8. 200-ft; 2 7/8 1L-80, WPF = 7.8 Ib/ft
Entrada top - 8.200-ft — 116-ft

Note: &-ft - Z-ft: top - thickness

10



Silixa Distributed Optical Fiber Technology

Fiber Optics Installation .Monitorin_q Solutions .Data Interpretation . Assess Risks
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Downhole Fiber Optic Cable — A825 Outer Sheath

Outer metal tube

Belting
Inner metal tube

Optical fibers

6.4 mm

* Drawing not to scale

Optical Details

Fiber Type Multimode Singlemode Constellation
Fiber Count 2 2 1
Core Diameter 50 uym 9 um 9 um
Cladding Diameter 125 pm 125 pm 125 pm
Wavelength 850 nm 1300 nm 1310 nm 1550 nm MNA
Maximum Attenuation 3.2 dB/km 1.4 dB/Km 0.72dB/Km_| 0.62 dB/Km NA
- -
L A STLIX A
< © Copyright Silixa LLC 2022 s 2ctionable insight


Presenter Notes
Presentation Notes
Downhole Fiber Optic Cable – A825 Outer Sheath: The downhole cable was purchased to the project and it is currently sitting at Silixa’s office in Missoula, MT. The fiber optic cable includes five optical fibers: 2 multimode fiber for distributed temperature sensing, 2 singlemode fibers for distributed strain and acoustic sensing, and 1 Constellation engineered optical fiber for enhanced acoustic measurements which provides 100x or 20dB improvement over that achieved with standard fibers.



Scheduled Data Acquisition- Fiber Optic

The DTS, DSS, and DAS data acquisition plan includes:

* Mobilization 1 — Fiber optic cable deployment

» Measurements during fiber optic cable deployment to assess integrity of optical
fibers using a portable optical time-domain reflectometer (OTDR).

» DSS and DTS surveys after the cable reaches total depth and before the
cementation process to assess the hole temperature profile, which can be used to
iInform the cement mixture.

» DSS and DTS surveys during and after the cementation process to assess the
cementation progress, final cement level, and cement curation process, which can

be informative about the thermal and hydraulic properties of the formation.
13



Scheduled Data Acquisition- Fiber Optic

The DTS, DSS, and DAS data acquisition plan includes:

* Mobilization 2 — Baseline
» Strain (DSS) baseline
» Temperature (DTS) baseline
» Acoustic (DAS) baseline (ambient noise log)

» Seismicity baseline
» Continuous monitoring during DFIT using DTS, DSS, DAS

14



LANL Multiscale Connection-fusion U-shaped Convolutional
Neural Network (MCFU)
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Machine Learning Fault Detection: Preliminary Result
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Machine learning fault detection on a depth-
converted 3D volume of a 3D prestack time
migration image showing that there is no
maijor fault at the project site.
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3D Surface Seismic, Before and after Reprocessing
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AHS Rock Volatiles CCS Well Site Evaluation

Analyze Rock Volatiles W Analyze Nearby Well

B Assess Risks
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Cuttings Sampling for AHS Analysis
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ADVANCED

SJB Fluid Migration from Legacy Cuttings Volatiles oo
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San Juan Basin Geological Modeling

« More than 2200 well tops so far
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SJB CarbonSafe Geomodel

Grid cells (nl x nJ x nK): 322 x 321x 29

Total number of grid cells: 2,886,660

X (ft.): 235356.12 ~ 555976.40 ->320620.28 ft. (60.72 miles)

Y (ft.): 1957320.33 ~ 2278308.71-> 320988.38 ft. (60.79 miles)

CRS: NM-W:NAD27 New Mexico State Planes, Western Zone, US Foot
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Carbon

San Juan Basin Geology
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In previous work, we identified the seismic risk using a single planar model
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Presenter Notes
Presentation Notes
For the SJB CarbonSAFE project, we used 3-D seismic data in conjunction with published literature to identify five separate faults or systems of faults that might lead to induced seismicity from the injection of the supercritical carbon dioxide. One scenario – the Hogback flexural faults – was shown to have relatively high Coulomb failure functions, but when analyzed in the context of the geologic framework of the faults, the past seismicity in the region, and the operational parameters of the basin (i.e. wastewater injection), we expect any seismicity along this fault system to be of low magnitude.


We are improving our understanding of risk

through discretization
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Presenter Notes
Presentation Notes
Going forward, we want to improve our understanding of the potential hazard on identified faults and fault systems by using a discretized fault plane rather than a single planar model, as was done by McCormack et al. (2022). We hypothesize that by discretizing the fault planes, we will take the full geometry – and its relation to the stress field – into account including any listric behavior or rugosity in the fault.

Our methodology is to assess a spherical ”search radius” around certain locations. Any data point along the surface of the fault that falls into that sphere is then placed into a planar regression to represent the geometry of the fault within the sphere. With enough spheres, we can discretize the entire fault. The size of the sphere is something that we are actively investigating.


We ran the analysis for three faults in the case of both discretization and a single
planar model
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Presenter Notes
Presentation Notes
We employed our method on three faults or systems of faults in the SJB. We expected that the discretization would lead to a systematic change in the CFFs, but as can be seen in these plots, the CFFs decreased in the flexural scenario, but increased in the vertical and orthogonal scenarios. Hence, more investigation is needed, and we turn to a Bayesian framework to understand the impact of discretization.

The difference between the two figures is that in the figure on the left, the median value of the CFFs for each point in the fault model is plotted. Keep in mind that there are 20,000 realizations from the Monte Carlo method for each point. In the figure on the right, all 20,000 realizations are shown for each point, resulting in 20,000x400 data points.


-or- flex.)

] v
i= 1,2,...,nplanes(r)

dip; strike; || depth;

multi-planar
fault

model

(seismic fault
locations) Sv
i °* 0CS

geomech.
model

Coulomb
failure

(vert. -or- orth.

We are formulating the problem in a Bayesian
framework

We want to understand the Impact
discretization (r) has on
Coulomb Failure Function (CFF)


Presenter Notes
Presentation Notes
The fundamental relationship that we are trying to determine is the impact that “r” (the discretization) has on the CFFs. We are constructing our analysis in a Bayesian framework such that we can understand the way that the distribution of “r” and the distribution of CFF are related relative both to each other and also the other parameters and data. We will still use a Monte Carlo geomechanical simulation, but it will be informed by Bayes’ Law.


Summary Slide

The project management team completed the technology maturation plan and received the
approval from the DOE.

The downhole Fiber Optic cable was successfully manufactured and the clamps utilized during the
cable 1nstallation was secured.

Over 1,161 well cuttings from four legacy wells close to the proposed SIB CarbonSAFE III site
has been 1dentified and analyzed geochemically through the RV Strat technology.

The concepts and mathematics involved in viscoplastic stress relaxation theory was constructed to
interpret the log data for fault detection and characterization.

The preliminary analysis using machine learning techniques did not identity any major fault
within the current 3D seismic volume.

The faults orthogonal to the Hogback Fault had been interpreted by the Monte Carlo Mohr-
Coulomb simulations.

The fault polygons for the hogback fault system as well as other basement faulting system in the
area has been identified and the static geological and hydrodynamic flow model was completed.
The training on advanced modeling tools, including dfnWorks, Hoss, and Amanzi, for the hazard
assessment have been completed.

28



Next Steps- DinWorks

Liguid Pressure (Pa)
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)

Next Step- Coupled Modeling Workflow
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Appendix

— These slides will not be discussed during the presentation but
are mandatory.
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Proposed Schedule
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Subtask 2.1
Subtask 2.2
Subtask 2.3
Subtask 2.4
Task 3.0

Subtask 3.1
Subtask 3.2
Subtask 3.3
Task 4.0

Subtask 4.1
Subtask 4.2
Subtask 4.3
Subtask 4.4
Task 5.0

Subtask 5.1
Subtask 5.2

Subtask 5.3

Subtask 5.4
Subtask 5.5
Task 6.0

Subtask 6.1
Subtask 6.2
Subtask 6.3
Task 7.0

Subtask 7.1

Project Year 1

Project Year 2

Project Year 3

Tasks

7[8] 9l10[ 11]12] 1[2[3]4]5] 6

718] 9[10[ 11 12] 1] 2] 3[ 4] 5]

[e2)

718[ 9] 10] 11] 12][ 1] 2[ 3[ 4] 5] 6

Project Management and Planning

Technology Maturation Plan

Deployment of Field Technology/Data Collection
Review of Well Design

Deployment of the DSS/DAS/DTS Fiber Optic Cable
Data Acquisition

Cutting Sample Collection and Pretreatment

Seismic Analysis for Fault Detection

Machine Learning Fault Detection of Surface Seismic Image
Machine Learning Fault Detection of VSP Images and VSP-DAS Images
Comparison with Industry Standard Seismic Fault Detection
Geochemical Analysis for Fault Detection and Characterization
Historical Sample Analysis

Volatiles Identification and Quantification

Bulk Mechanical Strength Measurements

Integration of well log and RVstrat Analysis

Wellbore Analysis for Fault Detection and Characterization
Fault and Fracture Detection using Wellbore Images

Fault and Fracture Detection using BARS

DFIT Analysis to Quantify Minimum Horizontal Stress, Pore
Pressure, and Matrix Permeability

Viscoplastic Minimum Principal Stress Estimation

Strain Modeling with Finite Element Analysis

Fault Slip/Activation Analysis

Compile Stress Information

Compile Fault Information

Compute Coulomb Failure Function

Integrated Modeling for Hazard Assessment

Geological/Static Modeling

Subtask 7.1.1 Geologic Structural and Stratigraphic Framework
Subtask 7.1.2 3D Hydrodynamic and Mechanical Model
Subtask 7.1.3 Fracture Modeling

Subtask 7.1.4 Fault Transmissibility Modeling

Subtask 7.2
Subtask 7.2.1
Subtask 7.2.2
Subtask 7.3

Advanced Rock Physics Modeling

Verify the presence of fractures in caprocks
Develop combined rock physics model
Advanced Numerical Modeling

Subtask 7.3.1 Hydrodynamic Modeling
Subtask 7.3.2 Coupled Thermo-hydrodynamic-Mechanical Modeling
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Outer Sheath: A825 Alloy Performance in Comparison to 316SS

Primary protection of fibers provided by outer sheath, 0.25" OD, 0.035” thick A825
Alloy continuous tube (sometimes called Incoloy)

[data from Sandmeyer Steel Corp & Special Metals Inc.]

Resistance to Laboratory Sulfuric Acid Solutions

Corrosion Rate in Boiling Laboratory

Developed for high corrosion resistance at high T, particularly low/high pH | Sulfuric Acid Solton MisNear(mm)
solutions & chloride stress corrosion (significantly higher performance than 310 636 (10.2 >1000 525 | >1000 (>25)
825 20 (0.5) | 11 (0.28) | 20 (0.5)
31688) 62d | 20U (U.5) |  Not lested | 17 (U.4)
High performance in high T environment, less than a 5% tensile strength SR
reduction at 500 C. Considerably stronger than 316 SS. toopy 2 20 Ty WO o0 o0 TP P
[
] r 4
0 A825 /’ ==
e St ___Tensile Strength y v
g— “h\' " = 500
E, 80 Je— = 3t6SS B ,’
E = — L \ -1500 g
. B0 \f‘ 00 8
_ E ongation '.|\ %
3 | ——— ] -
Resistance to Chloride Stress Corrosion Cracking @ 40 2<] -""5‘ J' ‘\\ 300
Test (U-Bend & ~~— -0 200
Samples) 316 SSC-6MO 625 20 ‘f;ELdWSté?fngt‘h NI I
42% Magnesium : . . . (0:2% Offset) s >N —{100
Chioride (Boiling) Fail Mixed Mixed Resist oy : -
bty i[‘é“Jmng] Fail Resist Resist Resist 0 0200 400 600 800 7000 7200 7400 7600 7800 ‘2000“
26% Sodium . : . . Temperature, “F
Chioride (Boiling) Fail Resist e Resist Figure 1. High-temperature tensile properties of annealed bar.

Mixed - A portion of the samples tested failed in the 2000 hour of test. This is an indication of a high level of resistance. Indicates the typical usage range.


Presenter Notes
Presentation Notes
Outer Sheath: A825 Alloy Performance in Comparison to 316SS: The slide talks about the benefits to use A825 instead of 316SS for CCUS projects.
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