Bench-Scale Development of a Novel Direct Air Capture Technology Using High-Capacity Structured Sorbents

DE-FE0032118

Cory Sanderson Susteon Inc.

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Project Overview

Total Funding: \$1,903,876

DOE Funding: \$1,500,000

Cost Share: \$403,876

Overall Project Performance Dates:

BP1: 10/01/2021-09/30/2022 BP2: 10/01/2022-09/30/2023

Project Participants:

Susteon Inc. (Prime)

Columbia University (Professor Robert Farrauto)

Cormetech

TotalEnergies

SoCalGas

DOE Project Manager: Mr. Dustin Brown

Project Objectives

The overall objective of the project is to lower the cost of DAC through development of a structured material system which will be regenerated with low-carbon electricity (TRL 3 to TRL 4).

Technical Objectives

- Increase CO₂ capacity and absorption rate to lower capital costs
- Regenerate directly with electricity
- Develop a washcoating synthesis process for structured supports for low-pressure drop
- Design and build a 1 kg/day CO_2 bench-scale unit
- Perform parametric and long-term testing to obtain engineering data needed for a pilot system design for next step of technology development
- Develop a process model to accurately represent the DAC process
- Perform and refine a technoeconomic assessment (TEA) to evaluate the commercial potential of an Nth of a kind large-scale DAC facility

Project Team

Susteon's Vision for DAC

Our Solution

Core Innovations:

- Non-amine sorbent for CO₂ capture
- An integrated selective heating mechanism
- A low pressure drop support Resulting in:
- A pathway to < 2,000 kWh/ton of CO₂
- CapEx target <~\$600/ton-yr

Key Differentiators

- 1. Abundantly available, low-cost capture agent (alkali metal based)
- 2. Low energy of desorption by controlling the chemistry
- 3. Fast kinetics of adsorption and desorption
- 4. Beneficial effect of moisture in ambient air
- 5. Innovative heating to minimize heat losses
- 6. Scalability using existing supply chain

Structured Material System (SMS) Concept

- Adsorption with alkali metal sorbent is different with 400 ppmv CO₂ in air compared to high concentrations of CO₂ in point sources.
- Humidity in air plays a critical role in CO₂ capture from air.
- Our SMA integrates the sorbent, regeneration method, and substrate into an optimized form, which;
 - Lowers capital utilization by enabling fast CO₂ adsorption rates and high capacity
 - Lowers the energy utilization by reducing pressure drop during adsorption and energy losses during desorption
 - Powered by low-carbon electricity for maximum net removal efficiency (no steam needed)

Technical Approach

- Optimize structured material system Na₂CO₃ on alumina support with the key objectives of (1) maximizing CO₂ capture capacity (2) maximizing CO₂ capture kinetics (3) maintain high dynamic capture capacity between cycles (4) good adsorbent stability (5) low desorption energy
- Support the sorbent on a low-pressure structured support such as monoliths to minimize the energy consumption due to pressure drop with a target of <250 kWh/ton of CO₂ captured. Coating of a uniform layer of Na₂CO₃ and alumina will require optimization of the coating process.
- **Develop a design for heating of sorbent** to initiate CO₂ desorption.
- **Design an efficient process cycle** for adsorption, heating, and desorption to maximize capital productivity and minimize the overall capex and opex for the process.

Project Success & Milestones

Project Success Criteria

- Complete at least 100 cycles of bench-scale system (1 kg/day CO_2 capture), continuous testing of the DAC process cycle to show less than 5% decrease in system CO_2 capacity as measured from 5th to last cycle.
- Process model which accurately predicts performance (adsorption/desorption rate, capacity, desorb heating requirements) within 5% of experimental results
- Attainment of the targeted TRL 4 on successful completion of bench-scale testing
- Final TEA showing progress towards DAC cost reduction to < \$250/ton CO₂
- LCA showing GHG removal efficiency of >50%.

Project Success & Milestones

Task/Subtask	Milestone Title & Description	Planned Completion Date	Actual Completion Date	Verification method
Task 1	Updated Project Management Plan	10/31/2021	10/22/2021	Submission of revised PMP
Task 1	Kickoff meeting	11/1/2021	11/1/2021	Presentation and PMP
Subtask 1.2	Technology Maturation Plan (TMP), Initial	12/31/2021	2/1/2022	Submission of initial TMP
Task 2	Demonstrate functionality of integrated structure material sorbent	5/31/2022	3/21/22	Quarterly Reports
Task 3 (Go/No-Go)	A CO $_2$ working capacity on SMS of 2.5 wt% in Bench-Scale System over 10 cycles	9/30/2022	7/15/22	Quarterly Reports
Task 4	Less than 5% capacity fade after 10 cycles	1/31/2023		Quarterly Reports
Task 5	Process model which accurately predicts performance (adsorb/desorb rate, capacity, desorb heat) within 5% validated against experimental results to date	5/31/2023		Quarterly Reports
Subtask 6.1	Techno-Economic Analysis	9/30/2023		Submission of final TEA
Subtask 6.2	Life Cycle Analysis	9/30/2023		Submission of final LCA
Subtask 1.2	Technology Maturation Plan (TMP), Final	12/31/2023		Submission of final TMP

Sorbent Washcoat Optimization

Determined a support

material for washcoating

Effects of Support

- Synthesized granules of alkali metal (Na and K) sorbents dispersed on different supports
- Investigated material type, particle size, porosity, acidity, surface area
- Samples were tested to evaluate the performance
 - CO₂ capture capacity
 - Sorption kinetics
 - Stability

Washcoat Loading

- High porosity cordierite monolith with thin walls was loaded with 2.39 g/inch³ of washcoat
- Coated monolith was tested for 50 cycles to demonstrate high washcoat stability

Sorbent Performance

Adsorption of CO₂ from humid air, breakthrough and cumulative

Desorption Method Optimization

- Coated cordierite monoliths with a layer of carbon to impart electrical conductivity and test their Joule heating performance
 - Explored different carbon precursors and used different loadings (g/in³) to achieve target resistance and heating performance
- Developing a coating procedure for achieving target resistivity, long term stability, and low-cost
 - Process is scalable using commercially available materials
- Characterized coated samples for their electrical resistance durability and heating performance

Key results:

- Determined appropriate coating and monolith materials for bench-scale unit
- Identified key parameters for improving coating uniformity
- Identified optimum loading (g/in³) for the resistive layer
- Resistively heated full-size monolith to 120°C
- Incorporated flow-through electrodes

Integrated Structured Material System Testing

- Created integrated structured material samples with cordierite monolith coated with a conductive layer and sorbent
- Sample had a washcoat loading of 2.91 g.
- Performed cyclic adsorption and desorption testing of integrated structured material in a lab reactor
- Regeneration achieved via direct resistive/Joule heating

Stage	Time (min)	Temperature (°C)	Gas (mL/min)						
Adsorption	60	Ambient	1000 (humid air)						
Purge	10-20	Ambient	500 (N ₂)						
Desorption	3-10	~120°C	500 (N ₂)						

Cyclic testing reactor conditions

Bench-Scale Design & Fabrication

Simplified Process Flow Diagram

FY22Q1: Design & Procurement FY22Q1: Fabrication & Assembly FY22Q3: Commissioning FY22Q4: Testing

Bench-Scale Unit

- Designed for 1-2 kg/day of CO₂ from ambient air
- Highly instrumented to obtain high-fidelity mass/energy balances
- All major process components representative of a scaled-up system included
- Full-scale four monolith bricks (150 mm cubes) can be tested
- System fully commissioned in Spring 22
- Fully operational and providing engineering data for 1 ton/day pilot plant

Bench-Scale Testing

- Coated a full-size (150 mm LxWxH) cordierite monolith with sorbent using an optimized method
- Performed cyclic adsorption/desorption testing

Stage	Time (hr)	Temperature (°C)	Gas (SLPM)					
Adsorption	2-3	Ambient	125-500					
_			humid air					
Purge	0.75	Ambient	0.1 bar					
Desorption	6-12	~75-110°C	$1.8 N_2 @ 0.2$					
			bar					

Bench-Scale Testing

BP1 Success #2- CO₂ working capacity on SMS of 2.5 wt% in bench-scale system over 10 cycles

Cyclic testing performed at varying WHSV, but fixed humidity of 40% RH

Project Schedule

Project Timeline			Months from Project Start Date																							
	Start Date	End Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Task 1.0 - Project Management and Planning																								-	\neg	
Subtask 1.1 Project Management Plan	1-Sep-21	31-Aug-23																								
Subtask 1.2 Technology Maturation Plan	1-Sep-21	31-Aug-23																								
Milestone 1a: Initial TMP within 90 days of Project Start		30-Nov-21			*																				\neg	
Milestone 1b: Final TMP within 90 days of Project Close Out		30-Nov-23																								*
Task 2.0 – Laboratory Studies of Structured Materials																										
Subtask 2.1 – Evaluation of Various Monolith Materials	1-Sep-21	31-Oct-21																								
Subtask 2.2 - Desorption Layer and Sorbent Washcoat Coating Studies	1-Oct-21	31-Dec-21																								
Subtask 2.4 – Structured Material Characterization	1-Dec-21	28-Feb-22																								
Subtask 2.5 - Structured Material Testing in Lab-Scale Reactor	1-Feb-22	30-Apr-22																								
Milestone 2: Demonstrate Functionality of Integrated Structured Material Sorbent		30-Apr-22								*																
Task 3.0 – Bench-Scale Design, Fabrication, and Testing																										
Subtask 3.1 - Design and Construction of th Bench-Scale System	1-Sep-21	31-Dec-21																						\neg	-+	
Subtask 3.2 - Coating of the SMS for Bench-Scale Testing by a Commercial Vendor	1-Jan-22	30-Mar-22																						\neg	-+	
Subtask 3.3 - Characterization of Commercially Manufactured SMS	1-Apr-22	31-May-22																						\neg	-	
Subtask 3.4 - Structured Sorbent System Bench-Scale Testing	1-Jun-22	31-Aug-22																							\neg	
Milestone 3: A CO2 Working Capacity on SMS of 2.5 wt% in Bench-Scale System over 10 cycles.		31-Aug-22												Go/ No- Go												
Task 4. Long-Term Testing																										
Subtask 4.1 - Accelerated degradation Testing at Lab-Scale	1-Sep-22	31-Dec-22																						-	-+	
Subtask 4.2 - Long-term Testing at Bench-Scale	1-Sep-22	31-Dec-22																						-	-+	
Milestone 4: Less than 5% capacity fade after 100 cycles		31-Dec-22																×						\neg	\neg	
Task 5. Process Design & Modeling																									\neg	_
Subtask 5.1 - Process Model Development and Validation	1-Nov-22	31-Jan-23																								
Subtask 5.2 - Desorption Optimization	1-Dec-22	31-Jan-23																								
Subtask 5.3 – Process Cycle Design	1-Jan-23	30-Apr-23																							\neg	_
Milestone 4: Process model which accurately predicts performance (adsorb/desorb rate,																										
capacity, desorb heat) within 5% validated against experimental results to date.		30-Apr-23																				*	\square			
Task 6. Techno-Economic Analysis & Life-Cycle Assessment																										
Subtask 6.1 – Techno-Economic Analysis (TEA)	1-Apr-23 1-May-23	31-Aug-23																								
Subtask 6.2 – Life Cycle Analysis		31-Aug-23																								
Milestone 6: High-fidelity TEA and LCA to assess the cost of CO2 capture and impact on GHG emissions from the proposed technology compared to SOTA.		30-Nov-23																								*

Technology Development Roadmap

Summary

Task 2

- Evaluated multiple low pressure drop substrates for sorbent loading performance and heating material integration
- Identified optimal support material to achieve sorbent dispersion and maximum adsorption rate
- Performed several iterative washcoat loading tests with various substrates, supports, heating material integration, and sorbent slurry conditions
 - Achieved BP1 target of 2.0 g/in³ washcoat loading on electrically heatable SMS
- Conducted cyclic adsorption and desorption testing on (1) SMA with sorbent only, (2) SMA with heating material only, and (3) fully integrated SMA with sorbent and heating material
 - Results from testing achieved BP1 targets for capacity fade and CO2 recovery
 - Achieved BP1 target demonstrating integrated SMA which captures and releases CO₂ with electric heating

Task 3

- Completed design, fabrication, and assembly of bench-scale reactor system
- Completed commissioning of bench-scale system, verifying instrument and analyzer calibrations, confirming system is leak tight, and mass balance closure
- Performed initial coating of full size SMA with sorbent only to date
- Ran many adsorption/desorption cycles on initial coated SMA in bench-scale system
 - Achieved BP1 target of 2.5 wt% over 10 cycles

Acknowledgments

Appendix

Structured Material Characterization and Testing

Adsorption Mechanism

- In situ adsorption (400 ppmv CO₂ in humid air) and heating (regeneration) XRD
- Adsorption on pure Na_2CO_3 leads to slow formation of hydrates, predominantly $Na_2CO_3.H_2O$
- Adsorption on Na₂CO₃ dispersed on alumina support leads to rapid formation of Trona
- $3Na_2CO_3 \cdot H_2O(s) + CO_2(g) + 2H_2O(g) \leftrightarrow 2Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O(s)$
- Fundamentally different process compared to Na₂CO₃/K₂CO₃ adsorption from >1% CO₂ streams

Structured Material Characterization and Testing

Desorption Mechanism

- Upon heating, trona formed during carbonation regenerates back to Na₂CO₃ phase
- This confirms we can cycle between Na₂CO₃ and trona with intermediate hydrate phases
- This work is continuing to get the measurements on heat of adsorption/regeneration and precise role of water in air.

