

Electrochemically Regenerated Solvent for Direct Air Capture with Cogeneration of Hydrogen at Bench-Scale DE-FE0032125

Ayo Omosebi, Xin Gao and Kunlei Liu University of Kentucky

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Funding: DOE \$1,313,887 and Cost Share \$329,084

Overall Project Performance Dates: 10/1/2021 – 9/31/2023

Project Participants: University of Kentucky, Vanderbilt University, and EPRI

Project Objectives

- Developing a capture technology to extract CO_2 from the atmosphere that reduces the cost of capture through:
- Developing a 2-unit process operation with ≥90% CO₂ capture at gaseous pressure drop ≤0.2 psi in the CO₂ absorber while regenerating CO₂ at less than 3.5 V in the ER by using a catalytic electrode
- Achieving a H⁺/K⁺ crossover (through a cation-exchange membrane) ratio of $\leq 15\%$ in the ER by optimizing a flow channel design, and spacer thickness;
- Demonstrating a continuous and reliable DAC process at the air flow rate of 10 cfm with ≥90% CO₂ capture efficiency for ≥100 hours, thereby establishing the data for the next-scale development.

Technology Background

<u>Key Electrochemical Reactions</u> (0V, $2H_2O$ + electrons = H_2 + $2OH^-$) (-1.2V, $2H_2O$ = O_2 + $4H^+$ + electrons)

$$\frac{CO_2 \text{ Capture}}{CO_2 + 2OH^2} = CO_3^{2^2} + H_2O$$
(Fast)

$$\frac{\text{CO}_2 \text{ Release}}{\text{H}^+ + \text{CO}_3^{2-} \rightarrow \text{HCO}_3^{-}}$$

 $H^+ + HCO_3^- \rightarrow CO_2 + H_2O$ or 2HCO₃⁻ → CO₂ + CO₃²⁻ + H₂O via flashing

- A: Permeate chamber for CO_2 absorption
- **B**: Feed chamber for mixture of KOH and K₂CO₃
- C: Positive chamber D: Negative chamber
- E: Open-tower for CO₂ absorption
- F: Air entrance and liquid sump

- Fast Kinetics Solvent
- Simplified Process and Operation
- Byproducts of H_2 and O_2 for sale

Technology Background- UKy Previous Results

Institute for Decarbonization and Energy Advancement

Engineering

L College of Engineering

Institute for Decarbonization and Energy Advancement

Project Scope

Work plan

- Design, fabrication, and research on hybrid absorber (HA), electrochemical regenerator (ER), and integrated process (HA + ER) (Task 2-4, BP1)
- Evaluation of integrated HA and ER including parametric and long-term evaluation and process modeling (Task 5, BP2)
- Process analysis including TEA and LCA and develop TMP (Task 1, 6 & 7)

Project Success Criteria		
Decision Point	Date	Success Criteria
Completion of BP1	09/30/22	 For MA, ≥60% of OH⁻ separation from CO₃²⁻ at liquid delivery rate > 2 L/hour For ER, ≤3.7 of operating voltage; ≤20% of H⁺/K⁺ crossover ratio through membrane
Project Completion	09/30/23	 10 CFM air DAC process with: <0.2 psi gas-side pressure drop ≥90% CO₂ capture for ≥100 hours ≤2.7 V of operating voltage, and ≤15% of H⁺/K⁺ crossover ratio through membrane

Membrane Evaluation for OH⁻ Separation

~17

99%

50%

Selectivity

#

3.74

2.39

6.47

4.40

4.66

4.19

Designation **NFX NF270** Brand Synder Filmtec NFX and NF270 Material Polyamide Polypiperazine **Selected** as Water Permeance (LMH/bar) ~4-7.5 membranes for MgSO₄ Rejection 99 % Hybrid Absorber NaCl Rejection 40 % Rejection $(1 - [C_{X,permeate}/C_{X,feed}])$ Milestone:>60% NF270 Membrane **30 LMH Constant Flux** Start CO3 Conc. OH⁻ permeance CO₃ Rej **OH Rej** (%) Feed / pН (%) (%) influent from Permeate with stream 0.1 11.83 83.90 39.74 Feed CO_{3}^{2} in 0.1 Permeate 11.61 concentrate 64.45 14.89 0.1 Feed 12.96 stream 0.1 Permeate 12.89 Achieved 100% 84.54 0* Feed 11.84 **OH**[•] permeance Permeate 11.92 0* influent Feed 12.97 77.28 from 12.99 Permeate stream with a 3 11.83 78.53 0* Feed nominal 3 Permeate 12.29 selectivity ratio 3 76.13 0* Feed 13.05 >4 3 Permeate 13.22

College of Engineering

Membrane Evaluation for OH⁻ Separation

Solvent Circulation: 100 mL/min Temperature: Room Conditions Membrane: Synder NFX Membrane Area: 140 cm²

Solvent	Osmotic Pressure at
5% K ₂ CO ₃ 0.3% KOH	100% Rejection ~421 psig

<u>Achieved ~100% OH⁻ permeance from influent stream with a selectivity ratio of 4</u>

UCollege of Engineering

Institute for Decarbonization and Energy Advancement

Capture Performance of Nanofiltration

140 cm² Flat-sheet Membrane

7.6 m² Spiral-wound Membrane

5 wt% K₂CO₃ Feed, NF@ 30 psig back-pressure, CO₂ Fed to Permeate side

Testing of Capture in Spray Column Section

	PJ20	PJ24	PJ32
2wt% KOH spray rate (L/min)	0.44	0.5	0.65
Nozzle pressure (psig)	120	90	40
Approximate coverage			
(inches)	12	16	22
Approximate spray height			
(inches)	6	8	11
Droplet size (µm)	41	50	62
Solution height (inches)	1.5	1.5	1.5
Air inlet above solution			
(inches)	3	3	3
Nozzle to solution (inches)	15.5	15.5	15.5

Capture enhanced at low flow (increased residence time) with ~90% achieved at 0.4 CFM Air

Institute for Decarbonization and Energy Advancement

ollege of ngineering

Performance of Hybrid membrane System

A. 5 wt% K_2CO_3 Feed, NF@ ~30 psig back-pressure, 0.36 CFM CO₂ Fed to Permeate side B. CO₂ from NF Permeate side continues to Spray Tower C. 2 wt% KOHFeed to spray section

Catalytic Electrode Selection for ER

Potential / V vs HgO

1. High current density under same potential means less energy to produce same H_2 2. Pt/C Cathode and Inconel (Ni-Fe-Cr) Anode appear as the best combinations

Institute for Decarbonization and Energy Advancement

ollege of ngineering

Full Cell ER Testing

Testing Conditions:

- Inconel anode and Pt-C cathode
- K₂CO₃ circulated at room temperature
- 16 cm² active area
- Constant current charging technique was applied, and cell voltage was measured
- Zero electrode space gap to 3 mm gap configuration.

Liquid in

Liquid/gas out

ngineering

Full ER Cell – Suppressing Voltage loss

Testing Conditions:

- 0.27 to 0.95M K_2CO_3 was circulated at 5-15 mL min-1 at room temperature;
- Constant current (3A) charging technique was applied, and cell voltage was measured;
- Electrode space gap was 1.5 mm each channel.
- The solvent regenerator was equipped with the Inconel anode and Pt-C cathode.

Concentration has a stronger effect on voltage

Full ER Cell – Suppressing Voltage loss and Mitigating Proton Crossover

Cell voltage (a) and $H^+/K^+(b)$ as functions of K^+ loading.

H/K increases with increasing loading factor (increasing current, decreasing concentration, decreasing flow rate)

Plans for Testing and Future Development

- Boost hydroxide concentration and gas-liquid contact zones and complete scale up of hybridized membrane absorber for 90% capture from 5-15 CFM feed
- Explore internal integration of MA (Spray Tower with Nanofiltration) via tubular and flat-sheet membranes

- Parametric and long-term continuous testing of integrated absorber and ER at 5-15 CFM Air
- Scale-up of ER system to 5 kg CO₂/hour (4000 CFM Air) and demonstrate negative emissions via solar integration

Summary

- (1) NFX and NF270 Nanofiltration membranes show capability to concentrate carbon loading (e.g., CO_3^{2-}) by removing OH- prior to sending ER for regeneration toward reducing energy consumption
- (2) Interim results show that the hybrid absorber including spray absorber and selective membrane is an effective absorber for DAC with capture facilitated by KOH solvent solvent
- (3) Electrochemical regeneration performance and energy requirement of the ER were found to strongly depend on inter-electrode spacing and loading factor - solvent concentration, flow rate and current

leering

Acknowledgements

- **DOE-NETL**: Mariah Richardson, Naomi O'Neil, Jose Figueroa, Patricia Rawls, Andrew P. Jones and Lynn Brickett
- UK: Jinwen Wang, Emmanuel Ohiomoba, Steve Summers and Lisa Richburg
- EPRI: Adam Berger and Abhoyjit Bhown
- Vanderbilt: Shihong Lin

Appendix - Organization Chart

HCollege of Engineering

Institute for Decarbonization and Energy Advancement

Appendix - Gantt Chart

Completion

	·		-	2021	2022	2023
#	TASK DESCRIPTION	Start Date	End Date	ONDJF	MAMJJAS	SONDJFMAMJJAS
1	Project Management and Planning	10/1/2021	9/30/2023			
BP1	Budget Period 1	10/1/2021	9/30/2022			
1.1	1A. Update Project Management Plan	10/1/2021	10/31/2021			
1.1	1B. Kickoff Meeting	10/1/2021	12/30/2021			
1.2	2A. Initial Technology Maturation Plan	10/1/2021	12/30/2021			
1.2	2B. Final Technology Maturation Plan	8/1/2023	9/30/2023			
2	Membrane Contactor Design and Fabrication	10/1/2021	5/31/2022			
2.1	Design Membrane Absorber	10/1/2021	11/30/2021			
2.2	Membrane Fabrication	12/1/2021	2/28/2022			
2.3	Modulation	3/1/2022	5/31/2022			
3	Electrochemical Regenerator Construction	10/1/2021	6/1/2022			
3.1	Catalytic Electrode Design and Fabrication	10/1/2021	1/31/2022			
3.2	Flow Channel Design	2/1/2022	6/1/2022			
4	System Integration	4/1/2022	9/30/2022			
4.1	Process Control and Monitoring and P&ID Development	4/1/2022	6/30/2022			
4.2	Procurement and Balance of Plant	6/1/2022	7/31/2022			
4.2	Startup and Commisioning	7/15/2022	9/30/2022			
BP2	Budget Period 2	10/1/2022	9/30/2023			
5	Parametric Study Through Longterm Operation	10/1/2022	7/31/2023			
5.1	Electrochemical Regenerator Cell Voltage Reduction	10/1/2022	3/1/2023			
5.2	Proton Transport Mitigation Through Membrane	10/1/2022	3/1/2023			
5.3	Effectiveness of CO ₂ Capture	10/1/2022	3/1/2023			
5.4	Longterm Operation to Characterize Material Degradation	1/1/2023	7/31/2023			
6	Technoeconomic Analysis	4/1/2023	9/30/2023			
6.1	Process Modeling	4/1/2023	5/1/2023			
6.2	Technoeconomic Analysis	5/1/2023	9/30/2023			
7	Life Cycle Analysis	4/1/2023	9/30/2023			
7.1	Life Cycle Analysis	4/1/2023	9/30/2023			