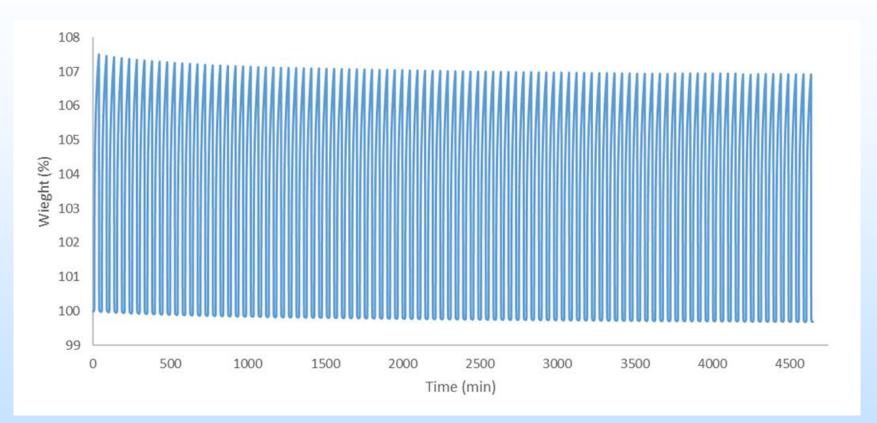
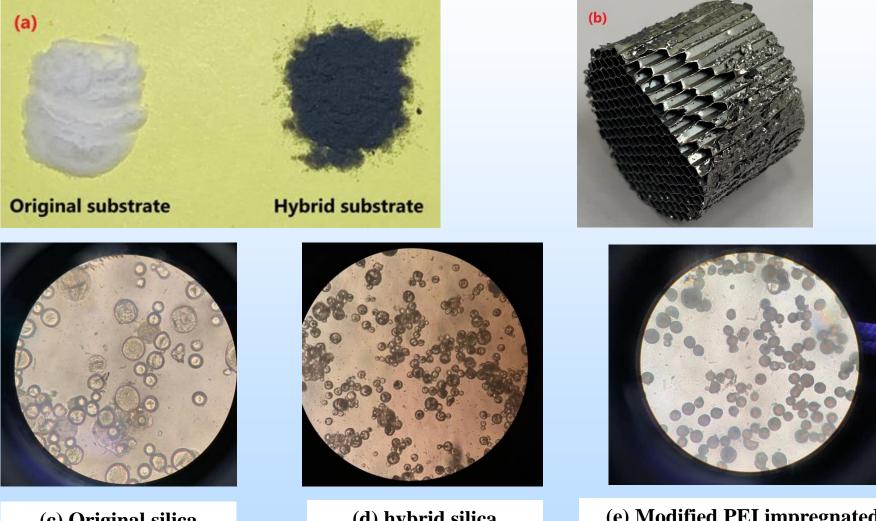
Energy-Efficient Direct Air Capture System for High-Purity CO₂ Separation

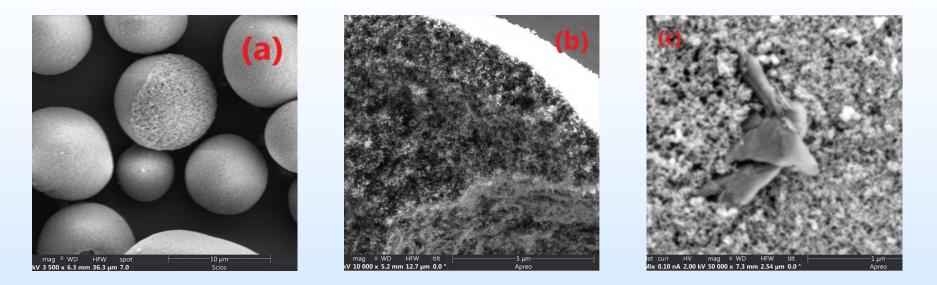

DE-FE0032128

Joo-Youp Lee University of Cincinnati


U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Project Overview

- Funding: DOE share \$1,499,999 and cost share \$393,650
- 2) Overall Project Performance Dates: 10/1/2021 –
 9/30/2023 (NCE has been requested)
- 3) Overall Project Objectives: demonstrate the
 Recipient's DAC sorbent technology to capture CO₂
 from ambient air and separate it at high purity.
- Project Participants: University of Cincinnati (UC), BASF, Daeyoung, Trimeric



Modified PEI/silica sorbents under 400 ppm CO_2 in dry air at 25 °C for adsorption and desorption with N₂ over **100 cycles** at 110 °C for desorption

(c) Original silica substrate

(d) hybrid silica substrate (e) Modified PEI impregnated onto hybrid substrate

SEM images of synthesized (a) spherical substrate, (b) cross-sectional substrate pores, and (c) hybrid sorbent substrate surface pores.

Surface area (~350 m²/g), pore volume (~1.8 cm³/g), and average pore diameter (~20 nm)

- Sorbent with resistance to oxidative and thermal degradations
- Hybrid substrate for better thermal properties
- Passive air contactor without energy requirement during capture
- High throughput of air flow with minimum pressure drop through sorbent-washcoated monolith in air contactor
- Increased selectivity toward CO₂ over water vapor

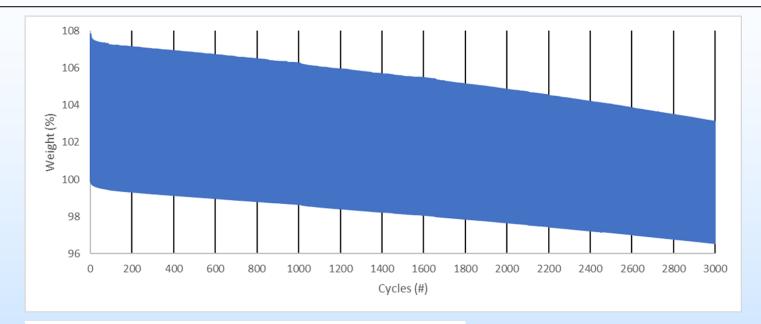
Technical Approach/Project Scope

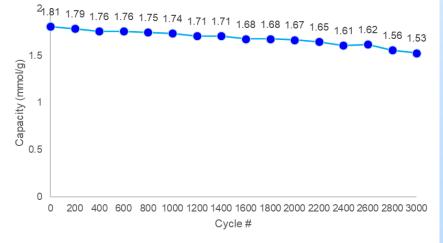
- Task 2: CFD and Adsorption Kinetics (UC)
 - \checkmark Air flow model through monolith in passive air contactor
 - Determine CO₂ adsorption kinetics
- Task 3: Manufacture CO₂ sorbent (UC)
 - ✓ Manufacture CO₂ sorbent
 - Evaluate long-term lab-scale performance
- Task 4: Manufacture sorbent-washcoated monolith structure (UC, BASF, Daeyoung C&E)
 - Develop sorbent-washcoated monolith
 - ✓ Determine cell size and length
- Task 6: Evaluate performances of sorbent-washcoated monolith in air contactor system (UC)
 - ✓ Measure temperature, humidity, velocity, and CO_2 concentration
 - ✓ Evaluate performance

Technical Approach/Project Scope

Major milestones

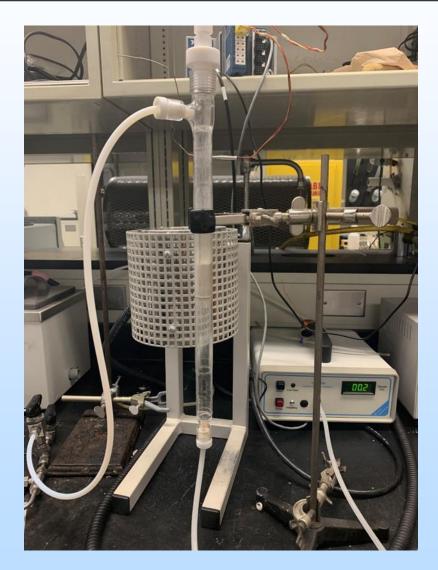
Task	Milestone Title & Description	Planned Completion Date							
3	Manufacture of 10 kg of CO ₂ sorbent	PSD+6 months							
4	Manufacture of two sorbent-washcoated monolith prototypes	PSD+8 months							
6	CO_2 capture efficiency, energy requirements, and overall volumetric CO_2 productivity	PSD+22 months							

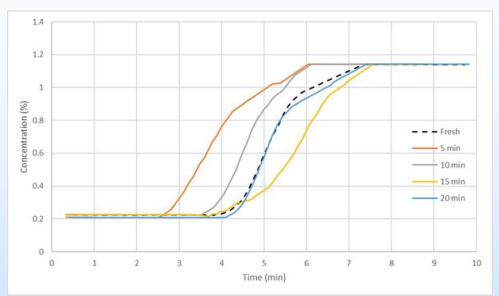

Major Success criteria


- 70% average CO_2 capture efficiency in passive air contactor with monolith with pressure drop of <200 Pa
- Overall volumetric productivity of $\sim 2 \pmod{CO_2/(hr \times V(l))}$

Project Risks and Mitigation Strategies

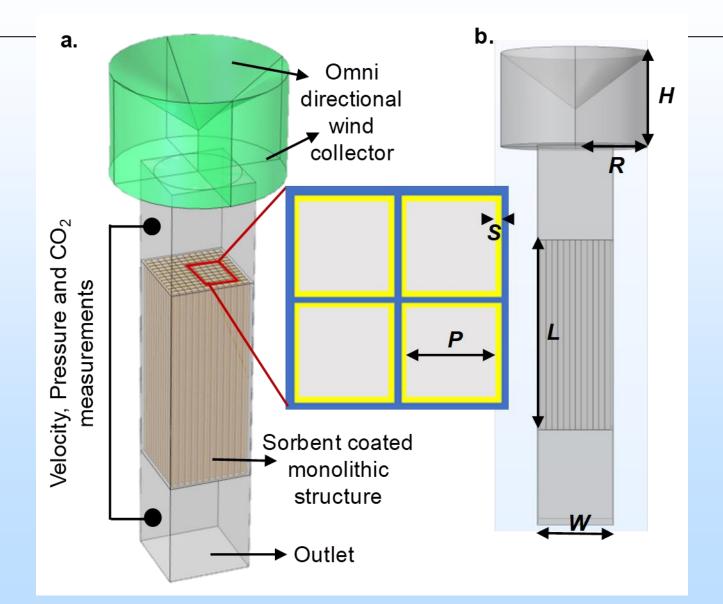
- Low performance of sorbent-washcoated monolith: BASF and Daeyoung will attempt many different coating formulations
- Low DAC system performance: parametric testing will be carried out to investigate the effects of parameter (i.e., operating conditions, materials, etc.) 8

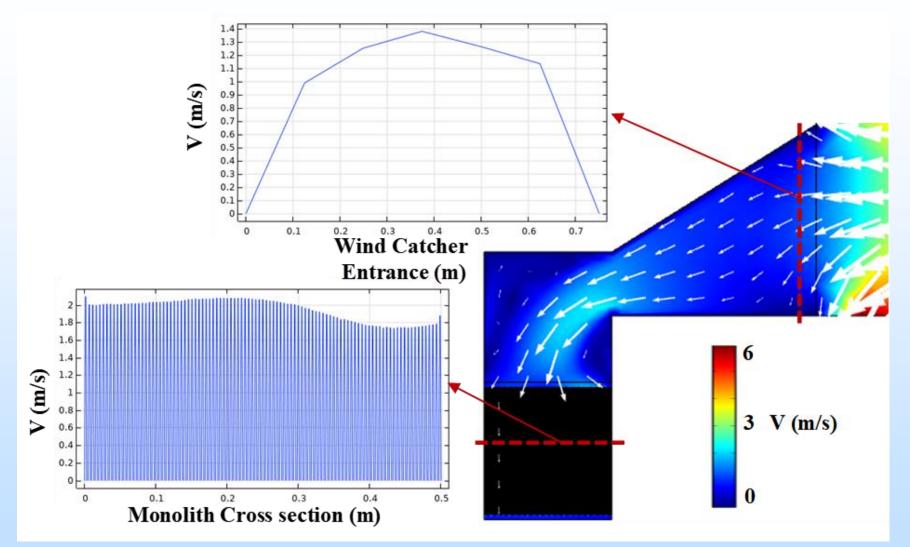

Performance of Powdered Sorbent in TGA



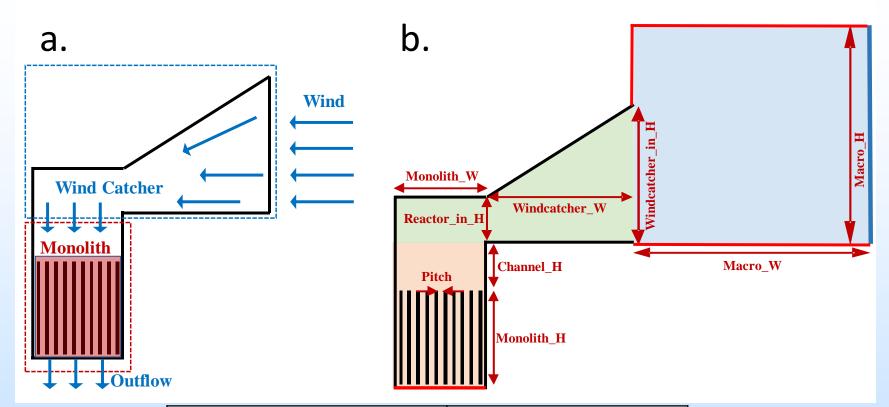
- Adsorption under 400 ppm CO₂ in dry air at 30°C and desorption under N₂ at 100 °C for desorption using powdered sorbent.
- <~20% loss in capacity over 3,000 cycles

Performance of Powdered Sorbent in Fixedbed Reactor

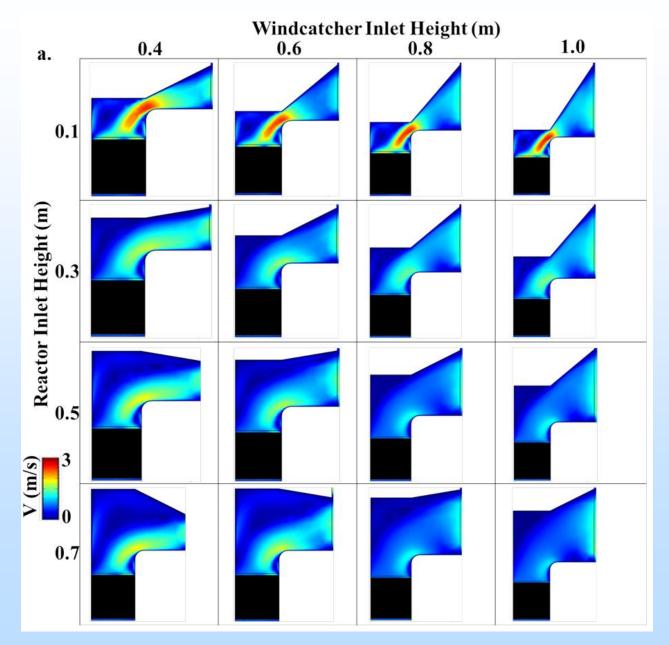


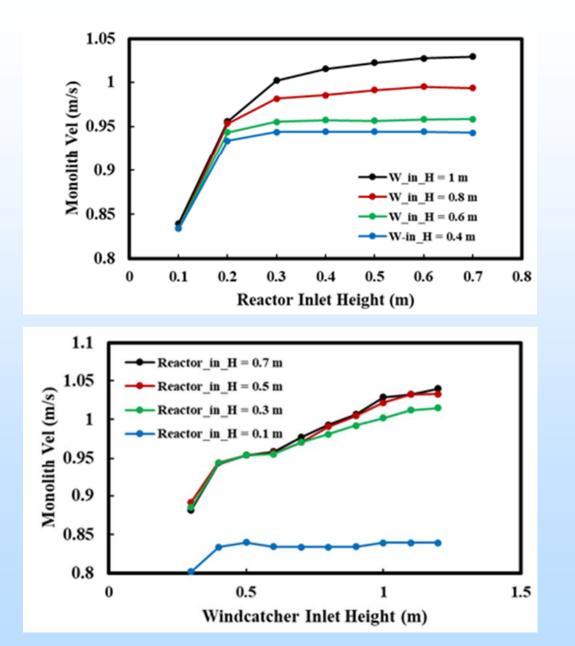


Adsorption capacity using 1% CO₂ in N₂ after desorption at -70 kPa and 110 $^\circ\text{C}$

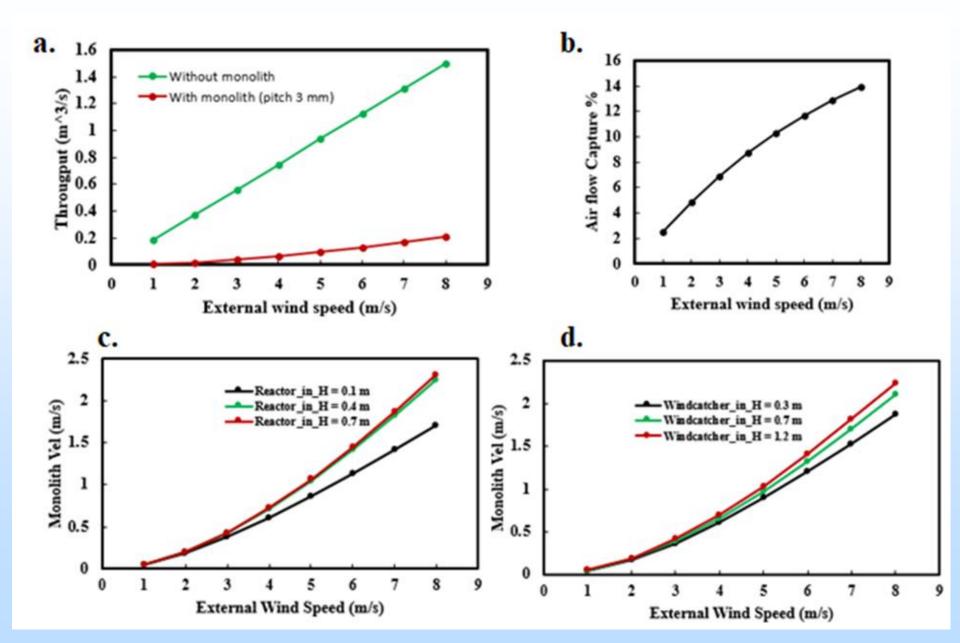

- (1) Fresh: 1.80 mmol/g;
- (2) 5 min vacuum: 1.07 mmol/g;
- (3) 10 min vacuum: 1.33 mmol/g;
- (4) 15 min: 1.72 mmol/g;
- (5) 20 min: 1.77 mmol/g.

Passive Air Contactor

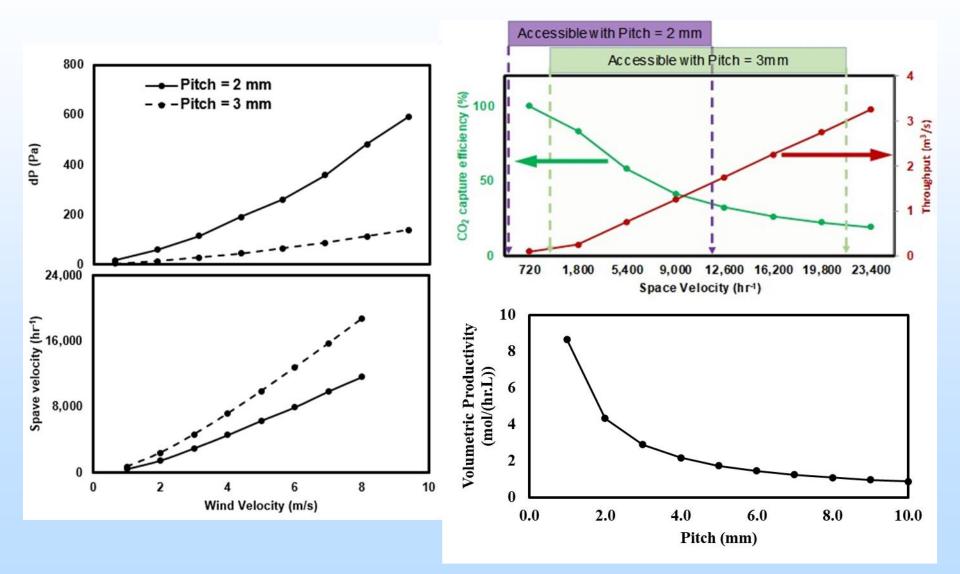




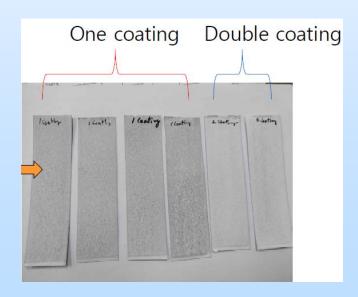
Wind speed: 5 m/s; pitch: 2 mm; linear velocity: ~2 m/s at middle height; Re: ~270



Geometric parameter	Simulated value
Wind velocity	5 m/s
Windcatcher_in_H	Variable
Reactor_in_H	Variable
Windcatcher_W	80 cm
Channel_H	30 cm
Monolith_W	50 cm
Monolith_H	50 cm
Pitch	3 mm

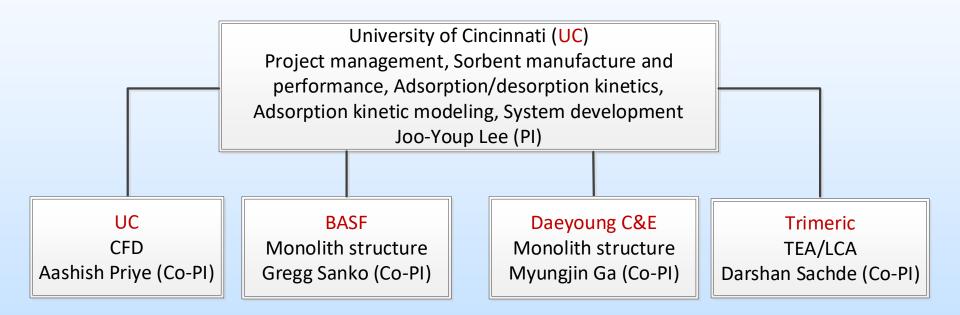


15


Estimated Performances for Sorbent-Washcoated Monolith

Plans for future testing/development

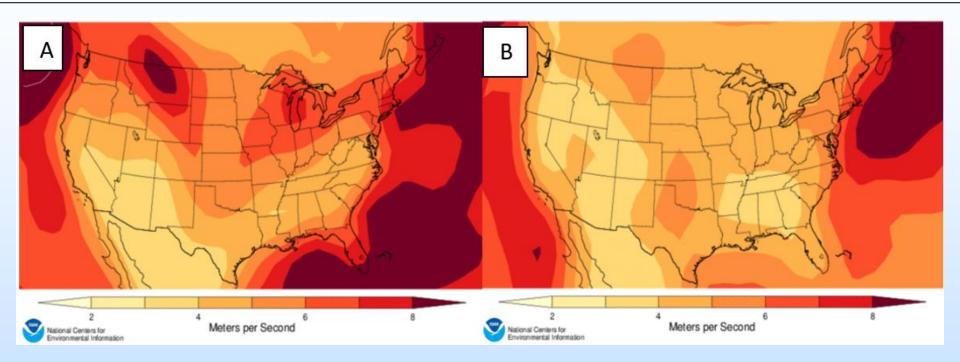
- Task 2: CFD combined with adsorption kinetics for DAC
- Task 4: Sorbent-washcoated monolith structure
 - ✓ Determine coating formulations
 - \checkmark Develop scaled monoliths after testing small monoliths
- Task 6: Performance evaluation of sorbent-washcoated monolith in DAC system to be installed in environmental chamber.



Summary Slide

- Sorbent technology based on modified amine and hybrid substrate
- Collaboration with BASF and Daeyoung on developing sorbentwashcoated monoliths for DAC
- Systematic and rational DAC design using CFD combined with adsorption kinetics
- Performance evaluations of DAC system in terms of wind directions, speeds, temperature, and humidity in environmental chamber

Appendix


Organization Chart

Gantt Chart

								Μ	[ont	hs f	fron	n Pı	oje	ct S	tari	t Da	ate	(PS	D)						
Task	Description	1	2	3	4	5	6	7												19	20	21	22	23	24
	Project Management and Planning																								
1.1	Project Management Plan																								
1.2	Technology Maturation Plan																								
2.0	CFD and CO ₂ Adsorption Kinetics																								
2.1	CFD Model through Monolith in Air Contactor																								
2.2	CO ₂ Adsorption Kinetics																								
2.3	CFD Model Combined with CO ₂ Adsorption Kinetics																								
3.0	Sorbent Manufacture and Long-term Evaluation																								
3.1	Manufacture of CO ₂ Sorbent																								
3.2	Long-term Lab-scale Evaluation																								
4.0	Sorbent-washcoated Monolith Structure																								
4.1	Development of Sorbent-washcoated Monolith																								
4.2	Determination of Cell Size and Length																								
5.0	DAC System																								
5.1	Design of DAC System										,	×													
5.2	Fabrication of DAC System																								
5.3	Start-up of DAC System																								
6.0	Performance Evaluation of DAC System																								
	Measurements of Temperature, Humidity, Speed, and																								
6.1	CO ₂ Concentration																								
6.2	Performance Evaluations																								
7.0	TEA and LCA																								
7.1	Development of Technical Cost Modeling (TCM)												1												
7.2	Development of Life Cycle Inventory (LCI)												1												
7.3	TEA/LCA Assessment of Scale-up DAC Technology																								
7.4	Final State-Point Data Table																								

Average Wind Speeds in Continental U.S.

Monthly average wind speed data for the month of (A) November 2020 and (B) May 2020 across the U.S. Accessed from the U.S. Wind Climatology database on National Centers for Environmental Information (NOAA) retried on June 29, 2021.