Direct Air Capture-Based Carbon Dioxide Removal with United States Low-Carbon Energy and Sinks

Cooperative Agreement No. DE-FE0032100 / Pittsburgh, PA / 17 August 2022 Jason Dietsch, Engineer, Illinois Sustainable Technology Center Dirk Nuber, PhD., Managing Director, Climeworks

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

Funding: \$3,124,749 DOE: \$2,499,798 20% Cost Share: \$624,951 Work Period: 1 Oct 2021 – 31 Mar 2023

\$2,499,798 \$624,951

DOE Cost Share

Project objectives

The overall objective of this Energy And SInks (EASI) project is to complete an initial design of a commercial-scale, Carbon Capture and Storage system for Direct Air Capture (DAC) that separates and stores a minimum of 100,000 tonnes/year (mt/yr.) net CO_2 from air. Three diverse host sites have been identified and will be used to determine the impact of different climates on the design of the DAC systems. In addition, the impact of using different low-carbon energy sources will also be evaluated. The focus of this project is the geological storage of CO_2 , rather than utilization of the CO_2 .

Project Team Management Structure

Background on capture technology

Technology Development Timeline

Climeworks history & milestones

Technology Development Timeline

How Climeworks technology works

- 1. Air is drawn into the collector with a fan. Carbon dioxide is captured on the surface of a highly selective filter material that sits inside the collectors.
- 2. After the filter material is full with carbon dioxide, the collector is closed and we increase the temperature to between 80 and 100 °C this releases the carbon dioxide.

Demonstrated Advantages of Technology

Mature plant design, experience in construction & operations	 Experience operating full-system prototypes as well as up to 4,000 tCO2/y units. Experience in site preparation, construction, process engineering & selection of industrial components.
Modular design	• The modular design of the DAC plants enables Climeworks to scale rapidly.
Process & sorbent technology	 Learnings from numerous laboratory test stands, mid- and full-scale prototypes as well as installations in Switzerland, Italy, Germany, and Iceland. The DAC collectors' modular nature and the flexibility of the integrated contactor structures ensure that future developments in sorbent technology can be easily integrated into existing hardware.

California

Climate

Hot and dry Avg High 89°F Avg Low 55°F 3.13" rain/year

Heat source

East Mesa Power Plant 27MW Geothermal, Binary plant (ORC)

Operator

Ormat Technologies, Inc.

Storage site

Saline aquifer, San Joaquin Basin near Buttonwillow, CA Sentinel Peak Resources - Operator

Transport to storage Truck, Rail, or Pipeline.

Louisiana

Climate

Wet & hot summers (Avg High/Low 91°F/76°F) Wet & warm winters (Avg High/Low 65°F/45°F) Avg 63.82" Rain/year

Power Source

Electricity Generated via Solar Power TotalEnergies SE

Operator: Gulf Coast Sequestration

Storage Site Deep Subsurface Rock Formations Between the Sabine River and Lake Charles, LA

Transport to storage Power Source and Storage site co-located at the same location.

Wyoming

Climate

Dry & warm summers (Avg High/Low 84°F/57°F) Dry & cold winters (Avg High/Low 30°F/15°F) Avg 8.56" Rain/year Avg 48" Snow/year

Heat Source

Painter Gas Plant Hot Water & Compressor Waste Heat

Operator

North Shore Exploration & Production, LLC

Storage Site

Depleted Oil & Gas Reservoir Nugget/Weber Formation, South Brady Federal Unit. North Shore Exploration & Production, LLC

Transport to storage Heat Source and Storage site are co-located.

Technical Approach / Project Scope

Project Tasks

Task #	Task
1.0	Overall Project Management
2.0	Initial Engineering Design
3.0	Costing Estimate
4.0	Techno-Economic Analysis (TEA)
5.0	Life Cycle Analysis (LCA)
6.0	Business Case Assessment
7.0	Environmental Health and Safety (EH&S) Analysis

Project Progress

Overall Project Management

• On going

Initial Engineering Design

- Design basis completed
- ISBL design completed
- OSBL / BOP design is ongoing

Costing Estimate

• Gathering quotes from vendors

Project Progress

Techno-Economic Analysis (TEA)

• On going. Pending Costing

Life Cycle Analysis (LCA)

• On going. Pending Costing

Business Case Assessment

• On going. Pending Costing

Environmental Health and Safety (EH&S)

• On going

Deliverables

Task #	Deliverable Title	Due Date	
1.1	Project Management Plan	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the NETL Project Manager.	
2.0	Initial Engineering Design		
3.0	Costing Estimate		
4.0	Techno-Economic Analysis (TEA)	Due at project completion. A draft shall be	
5.0	Life Cycle Analysis (LCA)	days before project completion.	
6.0	Business Case Assessment		
7.0	Technology EH&S Risk Assessment		

Project Timeline

1 October 2021 – 30 June 2022

					4	4th Qu	arter		1st Qu	arter		2nd Q	uarter	
Task Name 👻	Start	-	Finish 👻	Se	ep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Project Start	10/1/21		10/1/21		1									
1.0 - Project Management	10/1/21		3/31/23				1							
1.1 - Project Management Plan	10/1/21		10/31/21				I							
2.0 - Initial Engineering Design	10/1/21		3/31/23											
3.0 - Cost Estimation	7/1/22		11/4/22											
4.0 - Techno-economic Analysis (TEA)	4/4/22		3/3/23											
5.0 - Life Cycle Analysis (LCA)	4/4/22		3/31/23											
6.0 - Business Case Analysis	7/25/22		3/31/23											
7.0 - Enviromental Health & Safety Analysis	10/1/21		11/4/22											

1 July 2022 – 31 March 2023

			3	rd	Qua	arter		4th C	uarter		1st Qu	arter	
Task Name 👻	Start 🚽	Finish 👻		Jul		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Project Start	10/1/21	10/1/21											
1.0 - Project Management	10/1/21	3/31/23		+									
1.1 - Project Management Plan	10/1/21	10/31/21											
2.0 - Initial Engineering Design	10/1/21	3/31/23		+									
3.0 - Cost Estimation	7/1/22	11/4/22											
4.0 - Techno-economic Analysis (TEA)	4/4/22	3/3/23		-									•
5.0 - Life Cycle Analysis (LCA)	4/4/22	3/31/23		+									
6.0 - Business Case Analysis	7/25/22	3/31/23											
7.0 - Enviromental Health & Safety Analysis	10/1/21	11/4/22											

Risk & Mitigation Strategy

	Risk Rating : L,M,H			
Perceived Risk	Probability	Impact	Overall	Mitigation and Response Strategy
Financial				
Cost share for project not obtained or	т	ц	т	•Cost share commitment letters obtained.
insufficient	L		L	•All entities providing cost share are financially sound.
Results from business cases indicate that DAC				• Business case analysis will also explore future projections and highlightted
is not immediately financially attractive in the	М	Н	Μ	actions required to make this apporach attractive in the USA.
USA				
Cost/Schedule	-			
Project costs and/or schedule overruns	L	н	L	•Team has previous experience conducting DOE projects on budget and on
				time.
				•Preliminary results from Climeworks provide good basis and
Tasks require significantly more time than	L	Н	М	understanding.
expected				•Prior scale-up projects by Climeworks provide a good basis of
				understanding.
Technical / Scope	1			
	L		М	•Selection Process launched early in collaboration with partners.
Delays in selection of energy supply		Н		•Active dialogue with stakeholders and energy providers.
				•Weekly progress monitoring.
Availability of energy supply (i.e. sufficient		Н	М	•Selection Process launched early in collaboration with partners.
waste heat from existing host site)	L			•Options developed for multiple energy sources should primary source be
				unavailable for full project demand.
Delayed supply of equipment offers for	_		М	•Procurement review started in a timely manner allowing for some delays in
estimate	L	М		response time without affecting critical part of project.
				•Active dialogue with key suppliers to ensure that timeline is kept.
External Factor	1			
				•Team has worked virtually for months.
Issues related to COVID-19 delay execution	М	Н	М	•Communication process currently in place that uses remote work tools, e.g.
				Microsoft Teams.
Perturbations in the energy market create				•Host sites view DAC as a strategically important tchnology for their future
tinancial hardships for host sites, thus reducing	M	М	М	business plans.
their interest / ability to participate				*

Risk & Mitigation Strategy cont.

	Risk Rating : L,M,H			
Perceived Risk	Probability Impact Overall			Mitigation and Response Strategy
Management, Planning, and Oversight				
Unrealistic planning base/assumptions in project schedule may result in delays of project implementation	L	М	М	 Clear and carefully planned timeline created in collaboration with designers and engineers. Scenario-based planning, using conservative assumptions and adequate contingency time for activities on the critical path of the project. Bottom-up planning of individual activities.
Deficient project management may result in in inefficiencies and delays	L	М	М	 Integrated, holistic project management set up. Adequate allocation of experienced/qualified personnel to project management. Detailed milestone planning. Structured meeting, monitoring, and reporting structure to ensure real-time transparency. Defined decision-making structures and processes.
Availability of key personnel for project	L	М	L	•Commitment received from partner organizations.
Uncertainty of permitting agencies and timelines	L	L	L	•Agencies and timelines known based on previous experience with similar host sites.
Delays in host site selection	L	М	М	 Selection process launched early in collaboration with partners. Active dialogue with stakeholders and planning authorities. Quality, detail and conciseness of data and reports submitted ensured. Weekly progress monitoring.
Unable to meet USA equipment sourcing requirements	L	М	L	Tasks included in the SOPO to achieve this requirement.Key personnel dedicated to achieving this goal.
Unable to achieve USA labor sourcing requirements	L	М	L	•Actions already taken to achieve requirement.
EH&S				
Handling large volumes of sorbents creates new issues from an EH&S perspective	М	М	М	•Existing projects outside the US required managing larger volumes of sorbents and addressing regeneration.

Design basis

OSBL and ISBL Design Basis - Conditions for the design basis are set

CO₂ Product Specification - CO₂ product conditions for each of the host sites has been set to match the type of sequestration available

- California: 1,700 psig, >95% CO₂
- Louisiana: 2,000 psig, >95% CO₂
- Wyoming: 1,500 psig, >95% CO₂

Process Emissions and Effluents - Identification of components of emissions that could present potential environmental consequences

Steam and Electric Sourcing Study

- California: Geothermal heat and electricity
- Louisiana: Solar power, Electric steam generation
- Wyoming: Wind based grid power, Waste heat from host site

3D Model

3D Model

Next steps & Acknowledgements

Moving forward

- Completion of ISBL / OSBL Detailed Engineering
- Develop Overall Project Capital Cost Estimate
- Perform a Preliminary Techno-Economic Analysis
- Perform a Preliminary Life Cycle Analysis
- Completion of all Project Deliverables

Acknowledgements

Name	Organization
Krista Hill, Zachary Roberts	National Energy Technology Laboratory / US Department of Energy
Daniel Sutter, Karina Veloso	Climeworks AG
Kevin OBrien, Chinmoy Baroi	Prairie Research Institute / University of Illinois
Matt Thomas, James Mitchum, Ron Mihordin	Kiewit Engineering Group Inc.
Steve Swanson, Mark Fordney	North Shore Energy
Colin Williams	Gulf Coast Sequestration
Brian Meichtry	TotalEnergies SE
Roger Aines, Bill Bourcier, Wenqin Li	Lawrence Livermore National Laboratory
Bob Sullivan	Ormat Technologies Inc.
Marc Whitezell	Sentinel Peak Resources