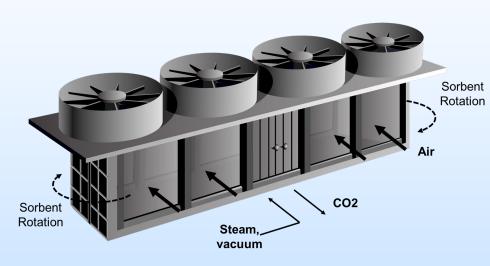
Demonstration of a Continuous Motion Direct Air Capture System DE-FE0031957

Miles Sakwa-Novak Global Thermostat

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Program Overview


Federal: \$2,499,996 Cost Share: \$850,000 Total: \$3,349,996 Budget Period 1: 1/1/2021 – 6/30/2022 Budget Period 2: 9/1/2022 – 8/31/2023 Budget Period 3: 9/1/2023 – 2/28/2023

Project Participants:

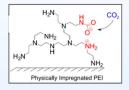
Global Thermostat
Georgia Institute of Technology
National Renewable Energy Laboratory
VADA
Zero Carbon Partners

Primary Objectives: Design and construction of a field-test unit demonstrating a continuous-motion direct air capture process, reducing complexity, CAPEX, & OPEX while increasing reliability

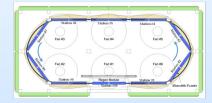
Technology Background: Concepts

GT DAC Module: Fluid – Sorbent Contacting Area

1. Moving Large Air Volumes Efficiently


Porous honeycomb monolith fluid contactors

3. Rapid, Efficient Regeneration


Direct-contact steam stripping fast and efficient CO₂ production

2. Capturing CO₂ Selectively at 400 ppm

Amine sorbents

4. Capital Efficiency

Low pressure drop multibed adsorption through panel movement

5. Design for Continuous Improvement

Future generations of monoliths are drop-in compatible

GTTC = Accelerated Development

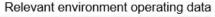
TRL1

Fundamental Rates, Material Properties

Laboratory-based testing 10-6 - 10-3 kg

Brighton, Colorado

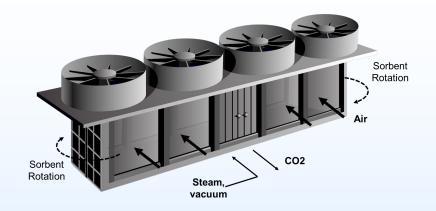
Bench-scale Controlled Conditions


Core Adsorption Tester

Multi-core Tester

Bench-scale testing 10⁻² - 10¹ kg

Pilot-scale testing 10³ - 10⁴ kg



Commercial-scale testing 10⁵ - 10⁶ kg

TRL8+

Kilotonne-scale GT DAC Demonstration

GT DAC Module: Fluid – Sorbent Contacting Area

- GT Batch Process
- Furthest developed process and capital embodiment
- Continuous process and capital embodiment is currently lower TRL

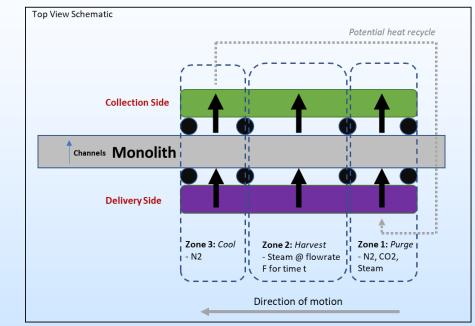
Technology Background: Advantages & Challenges

Technical / Economic Advantages:

- Rapid cycles (<20min) enabled by monolith contactor (adsorption) and steam regen (desorption). Reduced amortized CAPEX
- High capital utilization efficiency (improved CAPEX) while maintaining low pressure drop (improved OPEX) via panel movement
- High uptakes enabled by amine dense sorbent (improved CAPEX and OPEX)

Technical / Economic Challenges:

- Physical movement of large components can be mechanically challenging, particularly in a batch process (start/stop)
- Maintaining adequate sorbent lifetime over many cycles
- Wide parameter space with limited resources


Continuous Process Concept

How to translate batch process to continuous process? **Continuous Direct Air Capture Process Plan View Schematic** Zone 4: N2 Sweep for monolith cooling by Water vapor vaporization (Cooling) from cooling monoliths Rotation of Zone 3: Steam sweep Axial Monolith for CO2 Desorption Air fans Ring (Collection) Air CO2-lean Air discharged from upward by monoliths Zone 2: Steam sweep fans for N2Removal (N2 Purge) Adsorbed Ambient Air into monoliths Zone 1: N2 Sweep for Air clearing (Air Purge) Adsorption Apparatus Desorption Apparatus Seals (dashed) against monolith ring 1. Monoliths form a 'ring' isolate 'zones' for process functions 2. Roof-mounted axial fans draw through (delivery of fluids) monoliths as through cooling tower

Version 1 Technology Concept

GT R&D: Process Innovation:

Novel DAC embodiments utilizing core technology features, but realized in a different **process** and **capital design** offering potential economic advantages

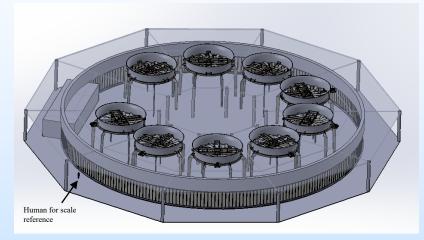
DAC Module Regeneration Concept

Area	Approach
<u>Capital Design</u> : Movement, sealing, airflow	Iterative design and mockup testing
Process Design: Cooling, purging	Experiment & Modeling

7

Technical Approach/Project Scope

<u>Project Scope & Goal:</u> Develop and demonstrate *continuous DAC* prototype based on the GT technology platform


<u>Development philosophy:</u> *design big, build small*: prototype the elements to enable successful climate-scale DAC deployments

Project Arc:

Tasks and Milestones		2021					2022					2023			
		Q2	Q3	Q4	J	F/M	Q2	Q3	Q4	JI	F/M	Q2 J	Jul.		
Task 1.0 - Project Management and Planning															
Tasks 2-5: Mechanical and Process Conceptualization, Engineering, and Analysis															
End of Year 1 Milestones: Mechcanical design complete, process basis established					\star										
Tasks 6-11: Detailed Engineering, Fabrication, Construction, and Comssioning															
End of Year 2 Milestones: cDAC plant comissioned and ready for field test campaign										\star					
Tasks 12-14: Plant Field Testing Campaign and TEA/LCA Analysis															
End of Project Goals: Successful field test campaign, prescreening TEA/LCA complete												-	\star		

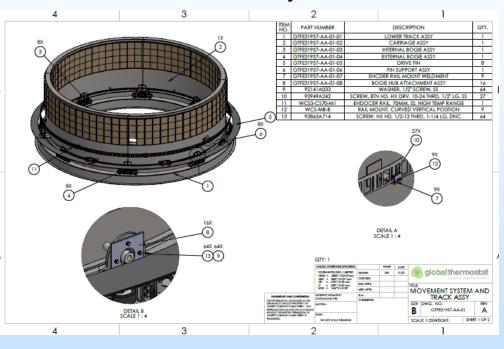
cDAC Module Concept

Modularize around air movement

~50 kta plant module used for scale assessment

- 9 fan plant module as base scale for mechanical concept evaluation
- Base module from which large installations are scaled up or out (in a variety of ways)

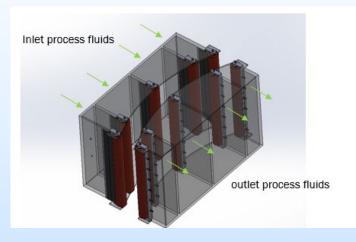
Development philosophy: design big, build small


Module subareas:

- Movement system
- Regeneration area (zones)
- Air processing (adsorption)

Prototype Module Development

- 20' diameter cDAC module prototype to be constructed
- Phase 1 build focused on monolith movement system



Movement System

- Engineering package developed to full set of fabrication drawings
 - Developed in-house
- Package at local, specialized fabricator ¹⁰ for bid

Regeneration Zones

Dynamic sealing system to create zone boundaries

Regeneration Unit with Roller Seals

Development of Direct Contact Roller Seals:

Cylindrical roller seals that contact the face of the monolith

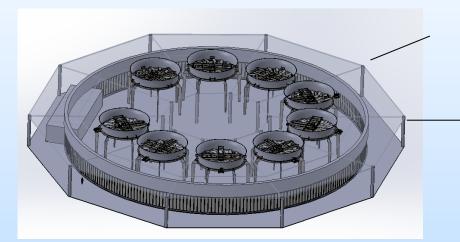
Create separation between fluid zones to enable temporal process steps

Two zone, cold flow prototype

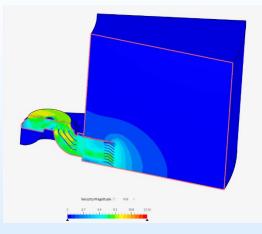
- Test of current detailed design, assessment of component fit ups and seal movement
- Measurements of leak rates

Zone Sealing Performance

Dynamic sealing system to create zone boundaries

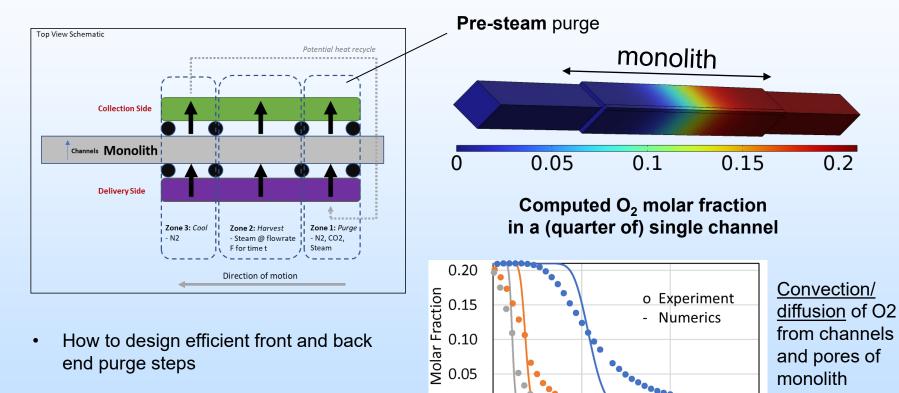

Measurements of leak rate (per unit length of seal) vs differential pressure across seal

Quantify fluid losses zone to zone to assess relationship between seal complexity, available differential pressure range, and fluid loss across seals


Interplay between capital design and process design: Small differential pressures available for process design

Air Processing

Low cost DAC requires efficient air movement


CFD analysis to analyze <u>airflow uniformity</u> (% RMS) and air movement efficiency (kWh / CFM)

Front Facing View Air Processing Prototype

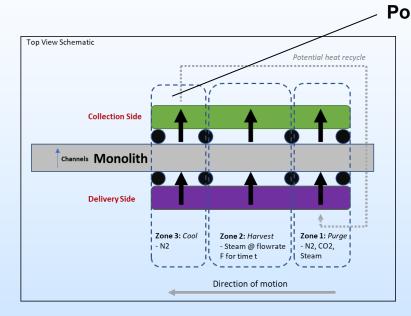
Process Development: Purge

0.00

0

• Front end purge step: remove oxygen and increase CO2 purity

Rapid, efficient purging step possible – what are effects of monolith internal structure? 14


Time (s)

10

15

5

Process Development: Cooling

- How to design efficient front and back
 end purge steps
- Back end step: monolith cooling prior to introduction to airflow, H2O recovery

Post-steam cooling System level evaluation 100C Inlet Nitrogen 32 kg/hr to get vaporization of 1 kg/hr of water – stream out is at 40.7C $N_2 In,$ $N_2 In,$ $N_2 In,$ $N_2 Out,$ $N_2 Out,$ $N_2 Out,$ $H_{20} Hi, T_{out}$

Thermal swing in $\ensuremath{\mathsf{N}}_2$ loop to drive evaporative cooling is primary cost driver

Capex/opex tradeoff with loop size, extent of cooling, H_2O recovery, monolith lifetime

Site specific factors such as cooling water temperature become important

Plans for future testing/development/ commercialization

BP2

- Fabricate and test DAC module (movement, sealing, airflow)
- Fabricate and install process area of plant
- Continued development and learnings from each prototype

BP3

• Operate cDAC plant, collect data, evaluate TEA/LCA

Summary

GT cDAC development proceeding through structured approach:

DAC module design areas of focus:

- Movement system
- Sealing system
- Air Processing

Process design focused on pre and post steam purge step development

- **Purge step** to remove O2 and increase CO2 purity
- **Cooling step** to recover H2O and reduce monolith temperature prior to reintroduction to airflow

<u>GT cDAC concept offers cost saving potential if challenges can be</u> <u>overcome. Project focus is on these technical hurdles</u>

Team

Global Thermostat

Eric Ping – Project Coordinator Miles Sakwa-Novak – Co-PI Sarah Wyper Zach Foltz Jed Pruett Yanhui Yuan Ron Chance Georgia Institute of Technology

Matthew Realff (PI, ChBE) Roman Grigoriev (Phys.) Michael Schatz (Phys.) Ari Glezer (MechE) Alex Warhover (Phys.) Marc Guasch (Phys.)

National Renewable Energy Laboratory

Eric Tan (PI) Ryan Davis

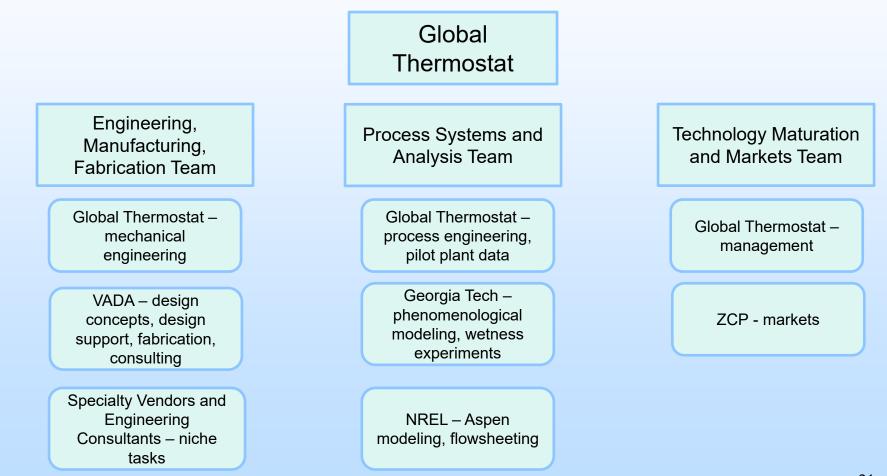
<u>VADA</u> Bud Klepper Zero Carbon Partners David Elenowitz

Appendix

Summary

GT cDAC development proceeding through targeted approach:

Development Areas: *design big, build small*


Area	Approach
<u>Mechanical</u> : Movement, sealing, airflow	Iterative design and mockup testing
Process: Cooling, purging	Experiment & Modeling

Design in progress for

- direct contact roller seals
- monolith continuous movement system
- airflow module design
- ASPEN process model
- physiological cooling dynamics model

Demonstration of cDAC remains on target for 2023

Organization Chart

Gantt Chart

Tasks and Milesterney	Tasks and Milestones Assigned 2021				2022					2023				
Tasks and Milestones	Resources	Q1	Q2	Q3	Q4	J	F/M	Q2	Q3	Q4	J	F/M	Q2	Jul
Task 1.0 - Project Management and Planning														
D1.1 - Project Management Plan	MTM													
D1.2 -Technology Maturation Plan	MTM													
D1.3 - EH&S Risk Assessment	MTM/Global													
D1.4 - Preliminary HAZOP	EMF													
D1.5 - Host Site Approval	Global													
Task 2.0 - Mechanical System Development														
D2.1 - Sealing and Movement System Concepts	EMF													
D2.2 - Basic Engineering of Mechanical System	EMF													
D2.3 - Detailed Engineering of Mechanical System	EMF													
Task 3.0 - Process Step Refinement and Development														
D3.1 - Base Channel Model CFD Development	PSA													
D3.2 - Experimental Model Validation	PSA													
Task 4.0 - Base Plant Model & TEA/LCA Scale Framework														
D4.1 - Plant-level Aspen Model	NREL/Global													
D4.2 - CAPEX Estimate and Scaling Analysis	VADA/Global													
Task 5.0 - Basic Engineering of Plant Process Equipment														
D5.1 - Basic Engineering of Process Components	EMF													
Go/No Go Decision (end of BP1)						\star								
Task 6.0 - Process Refinement and Lifetime Implications														
D6.1 - Purge Step Development & Simulation	PSA													
D6.2 - Evaluation of Sorbent Lifetime	PSA													
Task 7.0 - Detailed Engineering of Plant Process Equipment	EMF													
Task 8.0 - Mechanical System Fabrication and Commissioning	g													
D8.1- Mechanical System Fabrication and Delivery	EMF													
D8.2- Mechanical System Commissioning and Operation	EMF													
Task 9.0 - Comprehensive TEA & LCA and Scaling Analysis														
D9.1 - Baseline TEA & LCA	NREL/Global													
D9.2 - TEA & LCA Sensitivity Analysis	NREL/Global													
D9.3 - Scale-up vs. Scale-out Analysis	NREL/Global													
Task 10.0 - Fabrication and Integration of Plant Process Equip	oment													
Task 11.0 - Continuous DAC Process Commissioning														
D11.1 - Integrated Plant Check-out & Commissioning	Global													
D11.2 - Test Plan Development	Global													
Go/No Go Decision (end of BP2)											\star			
Task 12.0 - Continuous DAC Process Field Testing														
D12.1- Demonstration and testing of continuous DAC process	Global													
D12.2 - Continuous testing period	Global													
Task 13.0 - Refinement of Aspen Model	NREL/Global						Î							
Task 14.0 - Prescreening TEA/LCA	NREL/MTM													

Replaced