
Sustæra

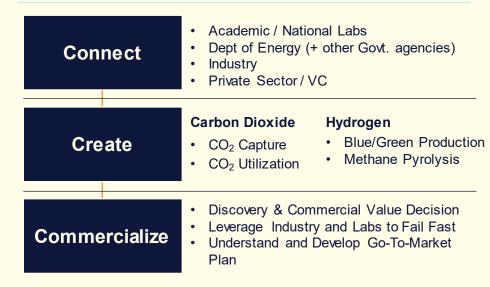
Carbon Reimagined Our Direct Air Capture Solution

Raghubir Gupta, PhD Co-Founder and Chief Technology Officer Sustaera

2022 Carbon Management Review Meeting Pittsburgh, PA 15222 August 16, 2022

Susteon Inc. (Parent Company of Sustaera)

Sustæra


MISSION

To develop and deploy decarbonization technologies by enabling disruptive innovations in CO₂ capture and utilization and carbon-free H₂ production

APPROACH

De-risk technologies through extensive prototype development and testing while securing a strong IP position

PROCESS

Raghubir Gupta President & Co-Founder

S. James Zhou Cory Sanderson Senior Director Process Technologist

Vasudev Haribal

Research Engineer

Aravind Rayer Research Engineer **Jonathan Peters** Research Engineer

Arnold Toppo **Research Engineer**

Shantanu Agarwal

President / Co-Founder

Tyson Lanigan-Atkins Materials Scientist

Jian Zheng Andrew Tong Sr. Research Engineer Sr. Research Engineer

RESEARCH & DEVELOPMENT TEAM

J.P. Shen Garv Howe Sr. Chemist Lab Director

BUSINESS & OPERATIONS TEAM

Rich McGivney Chief Financial Officer

Sudarshan Gupta Commercial Lead

Brian Alexander Director, Contracts & Legal Affairs

Arleane McKiver Executive Assistant

CO₂ Capture / Removal Experience of Susteon Team

Project	TRL Advance
Development of Na-based sorbents for coal combustion flue gas	TRL2 → TRL6
Development of non-aqueous solvents with low regeneration energy	TRL2 → TRL7
Composite membranes for flue gas CO ₂ capture	TRL2 → TRL4
Hybrid membrane/solvent contactor for CO ₂ capture from natural gas and syngas	TRL3 → TRL7
Hybrid membrane/solvent contactor for CO ₂ capture from flue gas	TRL3 \rightarrow TRL5
Design, construction, and operation of a 1,000 ton/day CO ₂ capture plant at Tampa Electric	TRL5 → TRL8
Development, design, construction, and operation of a 1M TPA CO_2 capture VSA from SMR syngas at Port Arthur, TX	TRL5 → TRL8
Development of CO ₂ -organic binding liquids for CO ₂ from syngas in H_2/NH_3 plants	TRL2 → TRL4
Development of high-temperature polymeric membranes for CO ₂ separation from syngas	TRL3 → TRL6
Development of structured sorbents for flue gas CO ₂ capture	TRL3 → TRL5
Development of dual function materials for direct reactive capture of CO ₂ from air	TRL2 → TRL4
Development of catalytic additives for lowering regeneration energy for amines	TRL2 → TRL4
Flexible CO ₂ capture with integration of renewable energy on the grid	TRL3 \rightarrow TRL5
CO ₂ capture from automobile exhaust	TRL3 \rightarrow TRL5

1000 ton/day of CO₂ capture plant at Tampa Electric Company, Mulberry, FL

Sustæra

How We Started

Sustæra

- Dr. Robert Farrauto at Columbia University spent over 30+ years working on optimizing monoliths during his time at BASF
- Dr. Raghubir Gupta spent the last **10+ years working on sodium carbonate** for a variety of sorbent applications

- 2019
- □ Dr. Farrauto at Columbia University developed Dual Functional Materials (DFMs) to capture CO₂ and regenerate them to produce renewable natural gas (RNG)
- Susteon partnered with Columbia University to further develop the DFM materials for reactive CO₂ capture
- 2020
- □ Susteon developed a new process design for a scalable DAC process.
- Screened numerous sorbent compositions and identified sodium carbonate-based materials.

DOE / FECM SBIR <u>Phase</u> <u>I and II g</u>rants (DE-SC20795) = **\$1.85M**

2021

- Conducted extensive lab and bench scale studies to optimize process conditions and invented the chemical pathway to minimize the regeneration energy.
- Developed a design of a modular DAC system
- Spun out Sustaera in June 2021

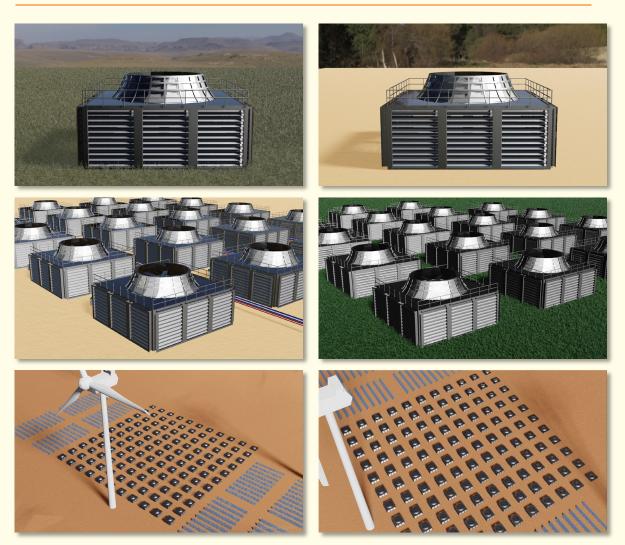
DOE FE00032118 grant = \$1.725M Closed Series A with leading Climate Tech VCs = \$10M

Launch of Sustaera – DAC 2.0

Our Solution

Direct Air Capture using:

- Non-amine sorbent for CO₂ capture
- An integrated selective heating mechanism
- A low-pressure drop support


Resulting in:

- A pathway to < 2,000 kWh/ton of CO₂
- CapEx target <~\$600/ton-yr

Key Differentiators

- 1. Energy provided exclusively by renewable sources (solar, wind)
- 2. Abundantly available, low-cost capture agent (alkali metal based)
- 3. Low energy of desorption by controlling the chemistry (~-65 kJ/mol)
- 4. Fast kinetics of adsorption and desorption
- 5. Beneficial effect of moisture in ambient air
- 6. Innovative, highly efficient heating to minimize heat losses
- 7. Scalability using existing supply chain
- 8. Strong IP portfolio

Conceptualization

Funding + Customers

Sustæra

Green Climate Adaptation

Gates-Backed Fund Invests in Carbon Capture Startup Sustaera

The company, which completed a \$10 million funding round, has secured Stripe as its first customer.

Raised ~\$4.575M in Grant Funding from:

Raised \$10M in Series A funding from:

🔅 Breakthrough Energy

• Sold 5,700+ tons of CO₂ Removal to:

stripe **(3)** shopify

Team

Experienced team with over 20+ R&D projects in CO₂ capture space; 100+ combined years experience in technology development and research; 30+ years of combined experience in start-ups, managing companies; Expertise in designing and starting up gas separation facilities and commercializing new technology

Dr. Mary Haas CEO

Dr. Raghubir Gupta Co-Founder / CTO

Rich McGivney CFO

Cory Sanderson VP, Technology

Sudarshan Gupta VP, Commercialization

Kent Hulick Systems Architect

Brian Alexander Head of Contracts

Arnold Toppo Design Engineer

Phil Singer Dr. Tyson Lanigan-Development Engineer **Atkins** Materials Scientist

Dr. JP Shen Lead Chemist

Dr. Claire Nelson Storage Consultant

Dr. Andrew Tong Lead Chemical Engineer

Ben Gardner

Project Manager

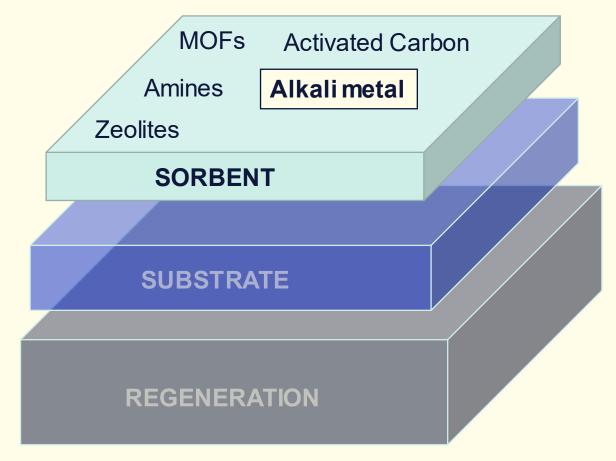
Sujay Someshwar Research Engineer

Kyle Vogt-Lowell Research PhD Intern

Sustaera DAC System Architecture

Goal: Develop a DAC system to maximize net CO_2 removal efficiency while minimizing the overall cost of capture and meeting the scaling challenge

1. Minimize Capital Cost


- Low-cost materials and manufacturing
- High performance (high selectivity to CO₂, capture rate, capacity, stability)

2. Minimize Energy

- Low driving force required for regeneration (~80°C)
- Low heat of regeneration

3. Leverage Scalability

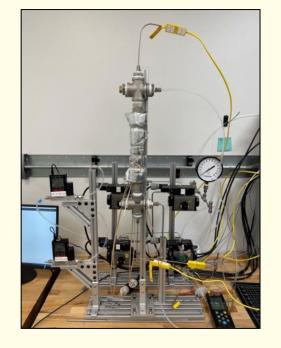
- Extensive past experience with sorbents and process design
- Abundant availability of raw materials
- Mass production infrastructure already exists

Alkali Sorbent for DAC vs Point Source Capture

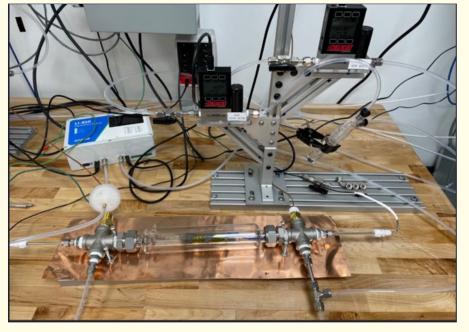
Sustæra

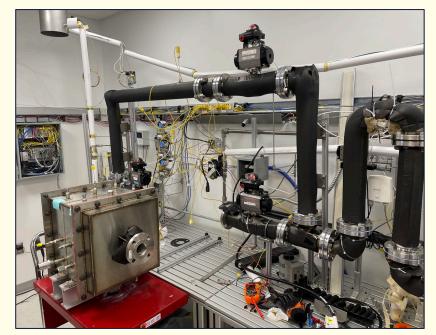
Performed a thorough IP landscape review of papers, journals, and patents on alkali metal sorbents for CO₂ capture

- Identified potential thermodynamic and chemical pathways
- Alkali metal sorbents have mostly been studied at high temperatures, high concentration of CO₂, and low H₂O to CO₂ ratio due to focus on carbon capture from point sources.

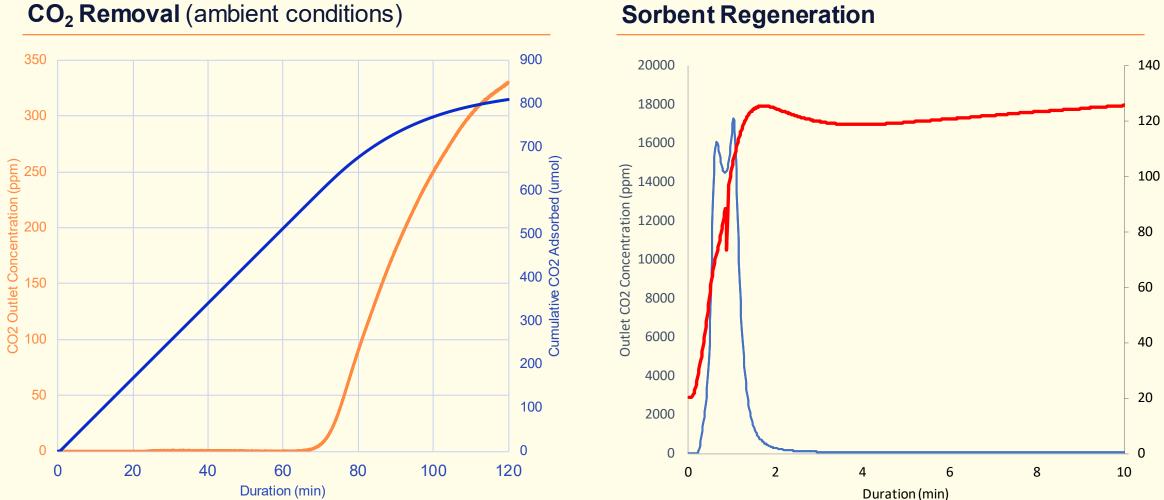

However, direct air capture (DAC) is different than point sources

- Lower CO₂ concentration (415 ppmv vs. 4 to 15 vol%)
- Lower temperature (ambient vs. >40°C)
- H₂O to CO₂ molar ratio (>10 in air vs. <2)


Where We Are Today

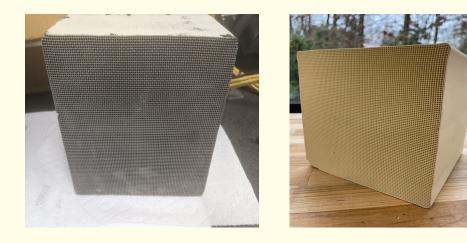

*Photos taken May 2022

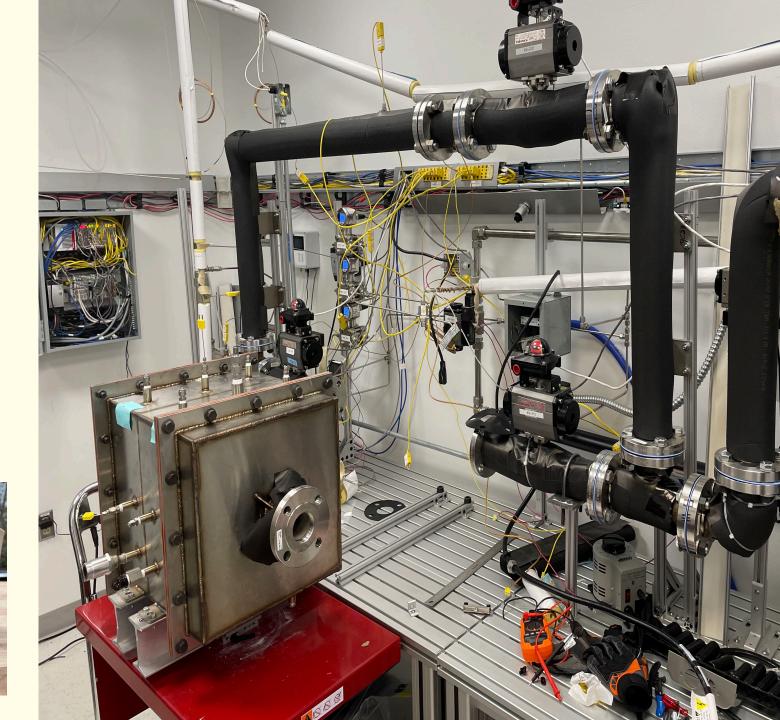
Screening Reactor 1 – Test Sorbent Compositions


Screening Reactor 2 – Test Electric Heating

Bench Scale Reactor

Sorbent Performance

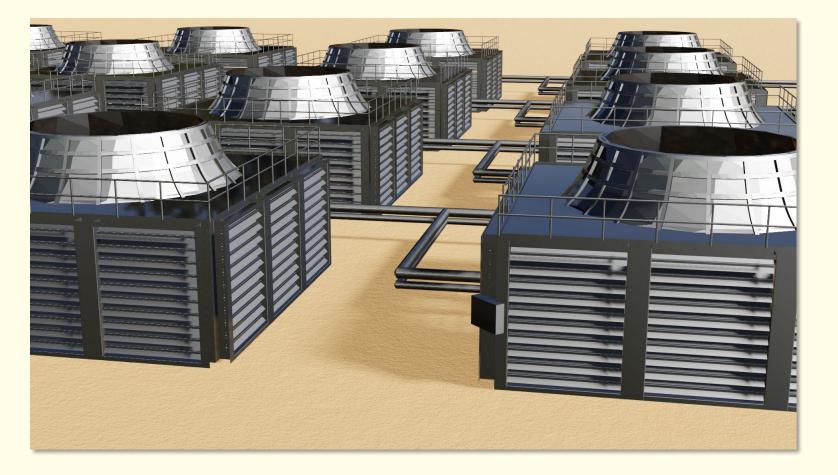



CO₂ Removal (ambient conditions)

Temperature (degC)

Bench-Scale Unit

- Designed for 1-2 kg/day of CO₂ from ambient air
- Highly instrumented to obtain high-fidelity mass/energy balances
- All major process components representative of a scaled-up system included
- Full-scale four monolith bricks (150 mm cubes) can be tested
- System fully commissioned in Spring 22
- Fully operational and providing engineering data for 1 ton/day pilot plant



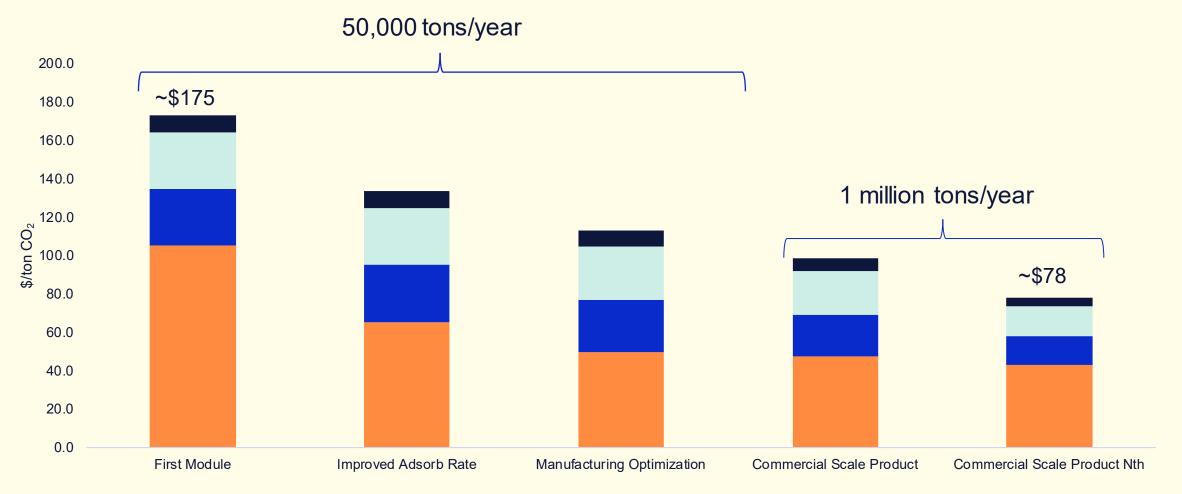
Mechanical Embodiment

- Each monolith is 6" x 6" x 6", ~400 are arranged in parallel to create a 'module'.
- 16 'modules' are arranged together in an air contactor structure to create a 'unit'.
- Each 'unit' with a footprint of 100 m² can capture ~8 t/d of CO₂
- Standard 'unit' design with direct integration with renewable electricity

Supply Chain for Scale up

Leverage existing supply chain and manufacturing infrastructure to set up assembly lines of material components of a scaledup DAC unit

One Gigaton Scale

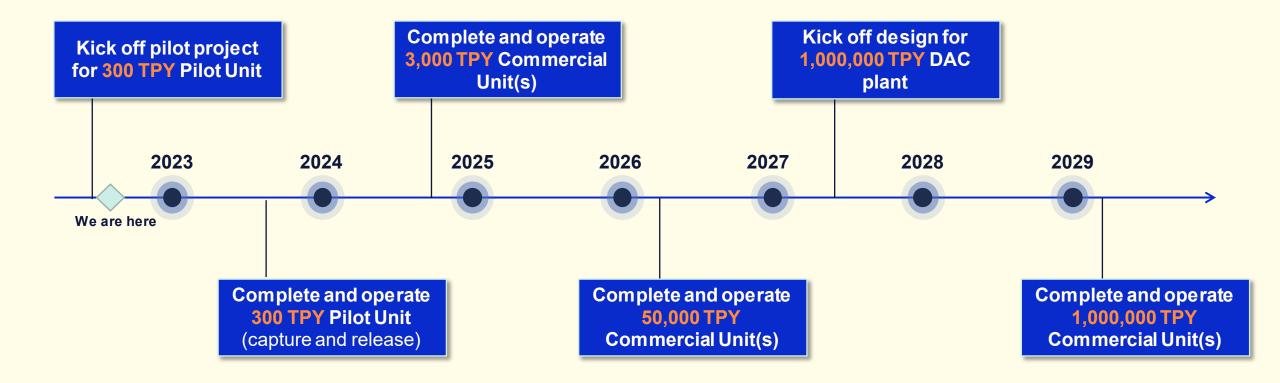

• Automobile production is a good model for setting up supply chains for building our DAC modules.

Sustæra

- All the key materials envisioned in this process are widely available—no new manufacturing processes or infrastructure needs to be developed (unlike amines/MOFs).
- Overall scalability risk is quite low, once a 1 TPD prototype is demonstrated.
- 100 TPD modules can be used as mass manufactured units to reduce the CapEx.

Cost Projections at Scale

■ Energy ■ SMS ■ CAPEX ■ O&M


Due Diligence Process

- 1. Key experimental results to validate the technical concept (seed funding from DOE)
- 2. Engineering Analysis
- 3. Detailed TEA model
- 4. Working LCA model
- 5. Filing of background IP
- 6. Project Team
 - 1. Technology Personnel
 - 2. Business Personnel
 - 3. Key Partnerships
- 1. Identification of key risks and mitigation plans
- 2. Scale-up plans
- 3. Business model

Roadmap for CO₂ Removal

GOAL: 500M (0.5Gt) tons of permanent CO₂ removal by 2040

Thank you

On a mission to restore the carbon balance **sustaera.com**

