Bench-Scale Testing of Monolithic PPI Structured Contactors for Direct Air Capture of CO₂ DE-FE0032094

Dr. Christopher Bertole CORMETECH, Inc.

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Funding and Performance Dates

- Two years total period, in two budget periods.
- Total Federal Share = \$1,500,000.
- Cost share = 20%.

BUDGET	Budget Period 1 9/15/2021 – 9/14/2022				ıdget Perioc 2022 – 9/14		Total 9/15/2021 – 9/14/2023			
	Federal Share	Cost Share	Total	Federal Share	Cost Share	Total	Federal Share	Cost Share	Total	
Total	\$882,681	\$220,670	\$1,103,351	\$617,319	\$154,330	\$771,649	\$1,500,000	\$375,000	\$1,875,000	
Cost Share %	20%		20%			20%				

Project Participants

Overall Project Objectives

- Develop a next generation oxide monolith + amine structured contactor for DAC, based on poly(propyleneimine) (1-PPI).
- Refine, with inputs from experimental kinetic, thermodynamic and transport measurements, the following models:
 - (i) Single channel monolith model
 - (ii) DAC process model
 - in order to:
 - (iii) Simulate the impact of substrate textural properties (meso and macro porosity) on DAC performance, and
 - (iv) Enable contactor optimization prior to prototype synthesis and bench-scale testing validation.
- Refine the DAC process TEA and LCA.

Technology Background Global Thermostat DAC Platform

1. Moving Large Air Volumes Efficiently

outperform all other designs, enabling low pressure drop and minimum energy cost

2. Capturing CO_2 Selectively at 400 ppm

Amine-based polymers, incorporated in proprietary coatings, yield selectivity, capture efficiency, and compatibility with honeycomb monolith approach

3. Energy Efficient Regeneration of Captured CO₂

5. Design for Continuous Improvement

Base capital design capable of receiving new and future generations of improved adsorbent materials to regularly maximize capture capacity and extend plant capital life.

4. Capital Utilization Efficiency

Process and mechanical movement design enable multi-bed adsorption configuration serviced by one regen module

Technology Background Oxidative Stability of Base Sorbent: PEI

• Poly(ethylenimine) is known to degrade in the presence of O_2 .

- GT's base DAC process is designed to mitigate high temp exposure.
 - Incorporating a new sorbent with enhanced oxidative stability will improve the on-stream sorbent lifetime in the base GT DAC process, and potentially enable new process paradigms.

Technology Background Improved Oxidative Stability Sorbent: PPI

- Poly(ethylenimine) / PEI: $-(NH CH_2 CH_2)_{n>1} NH_2$
- Poly(propyleneimine) / PPI: $-(NH CH_2 CH_2 CH_2)_{n>1} NH_2$

Pang, S. H.; Lively, R. P.; Jones, C. W. ChemSusChem 2018, 11 (15), 2628-2637.

Technology Background State before Start of Project

• I-PPI performance under DAC conditions was only known:

- for supported powders,
- under dry feed adsorption,
- and thermal N₂ desorption conditions.

Data were not available for monolith *l-PPI* under "real" process conditions.

• I-PPI was not a commercially available material.

 Cannot order it from a catalog in sufficient quantity to run the bench-scale validation tests for a monolithic form.

Project Steps – BP1 Scale-Up of Linear-Poly(propyleneimine) (1-PPI)

BP1 activities (9/15/2021 – 9/14/2022)

• Run "initial" bench-scale DAC test for monolithic I-PPI.

- Design, build and commission bench-scale test unit for testing.
- Make sufficient I-PPI to synthesize full-size monolith part (min. 1 kg).
- Make full-size monolithic I-PPI part, with standard substrate.
- Complete bench-scale test.

• Develop predictive tool to optimize substrate for I-PPI.

- Establish FEA single-channel monolith model.
- Measure CO₂ adsorption / desorption equilibria and diffusive transport rates in porous metal-oxide PPI supported materials, for FEA model.
- Update DAC process model incorporating the novel sorbent/contactor combination and start work on the TEA.

Project Steps – BP2

Scale-Up of Linear-Poly(propyleneimine) (1-PPI)

BP2 activities (9/15/2022 – 9/14/2023)

- Optimize the substrate for I-PPI.
 - Refine and apply the FEA single-channel monolith model to optimize substrate properties and improve performance.
 - Measure CO₂ adsorption / desorption equilibria and diffusive transport rates for the optimized porous metal-oxide PPI supported materials, to refine the FEA single-channel monolith model.

• Run "optimized" bench-scale DAC test for monolithic I-PPI.

- Make optimized substrate and activate full-size monolithic I-PPI part.
- Complete the bench-scale test.

• Run oxidative stability testing to validate I-PPI stability.

- Update the models (process, single channel monolith) with these data.
- Finalize the DAC process TEA and LCA for I-PPI.

Project – Success Criteria

Decision Point	Date	Success Criteria
Completion of BP1	9/14/2022	 Adsorption data obtained under DAC relevant conditions for PEI baseline part, under at least two different operating conditions; data consistent with core sorption tester. Minimum 1 kg of I-PPI. Capacity of I-PPI > 1.00 (normalized target value basis) on single brick tester. Optimized substrate for I-PPI: min 20% adsorption capacity improved. Energy performance calculated from the process model.
Project Completion	9/14/2023	 Minimum of 1 full-size I-PPI loaded optimized substrate ready for testing on the single brick sorption tester. Capacity of I-PPI > 1.20 (normalized target value basis) on single brick tester. Oxidative stability of I-PPI validated, per State Point Data Table. Transport data obtained from at least 2 different methods show < 50% variation. The TEA/LCA show advantages of I-PPI-based DAC systems vs. PEI-based DAC systems.

Project – Risks and Mitigations

- Risk 1: bench-scale test unit doesn't work properly.
 - Mitigation: CORMETECH had extensive experience with unit design.
 - Status: complete. Data are in good agreement with core test unit.

• Risk 2: I-PPI produced by sub-contractor is of poor quality.

- Mitigation: Global Thermostat set quality specifications for vendor.
- Status: complete. Material produced met quality specifications.

• Risk 3: only 1kg of I-PPI was produced by sub-contractor.

- Achieved target amount (min 1kg), but it's a limited, precious supply.
- Status: complete for BP1. One full-size part has already been made, with ~0.5kg in-process, and the part itself consuming ~0.15kg.
- Mitigation: conserve, and reuse, the I-PPI as much as feasible.

Single Brick Sorption Tester (SBST) Bench-Scale Test Unit

Test Cycle: Air Adsorption \rightarrow Vacuum Purge \rightarrow Steam Injection \rightarrow Vacuum Purge.

Fully-automated test unit.

Low-range analyzers (inlet, outlet) for air stream analysis.

High-range analyzer for product stream analysis.

Mass spectrometer for fast transient analysis (steam out); acquired for this project.

Commissioning completed: validated using standard PEI monolith part.

Initial Project Testing of 1-PPI Baseline Data for Large-Batch Validation

Initial testing of lab-scale I-PPI selected for scale-up:

- Confirmed significant oxidative stability benefit of 1-PPI over PEI (+25°C).
- Confirmed CO₂ adsorption capacity is in expected range.

Isothermal DSC oxidative stability test

1kg L-PPI Batch from Vendor (Subcontracted by Global Thermostat)

Table shows quality assurance tests run by vendor before shipment; all tests passed spec.

Parameter	Method
Appearance	Visual inspection
Average Molecular Weight	Calculated on NMR
Identity	¹ H-NMR
Identity	ATR-IR
Purity	SEC-HPLC RI- Detection
Metals	ICP-MS
Amine	Conductometric
content	titration
Drying Loss	Extra Drying at 80°C, 5 mbar

- **GT and GTRC** are performing additional validation tests on a small aliquot of the large batch 1-PPI (will be completed by end of BP1).
- Data will be compared to previous lab-scale synthesized 1-PPI material.
- The data collected to date indicate the large-batch l-PPI is good material. 15

1-PPI Test Data: Impact of Adsorption Air Moisture Content

• Impact of moisture on CO₂ adsorption capacity varies with the PPI loading: promotes at low load, inhibits at higher load.

Humid TGA data from Global Thermostat

Core sample data from Cormetech

The humid TGA was acquired for this project.

SBST Data for 1-PPI Monolith Part (Standard Monolith Substrate)

Clear opportunity to optimize for PPI:

- Substrate properties
- Amine loading

The BP1 performance target has been achieved! $(H_2O \text{ content of air feed ranged from } 1.0-1.9v\%)$

Core sample data (corrected to same PPI loading) is consistent with SBST data. 17

Synergy Opportunities

- Fundamentals: Structure / Property Relationships
 - Adsorption/desorption isotherms (Global Thermostat)
 - Diffusive transport (Georgia Tech)
 - Single-channel monolith model (Cormetech)
- Monolith Prototyping
 - Batch and extrude monolith prototypes at Cormetech, with structures optimized for 1-PPI (from Fundamentals).
- Monolith Testing

- Test of optimized 1-PPI monolith at Cormetech on SBST.

Adsorption/Desorption Testing and Model Development

- Measuring CO₂ adsorption isotherms for supported 1-PPI under dry and humid conditions.
- Adsorption model \rightarrow incorporating into the COMSOL single channel monolith model.
- Supports substrate optimization work.

Diffusive Transport Testing and Model Development

- Measuring CO₂ diffusion rates through I-PPI supported on model and porous substrates.
- Diffusion model \rightarrow incorporating into the COMSOL single channel monolith model.
- Supports substrate optimization work.

Wicke-Kallenbach membrane diffusion cell

Single Channel Monolith Model Development and Simulation

• Model incorporates flow, pressure, temperature, reaction, and transport, with steam as heating medium for desorption.

Next Steps Testing/Development/Commercialization

- In this project:
 - BP1 review meeting is scheduled for August 29, 2022.
 - BP2 work activities:
 - Optimize monolith substrate for 1-PPI.
 - Make and test the optimized prototype on the SBST.
 - Run oxidative stability testing for I-PPI and update models.
 - Complete DAC process TEA and LCA for 1-PPI.
- After this project:
 - Engineering-scale demonstration for PPI.
 - Depends on feasibility & cost of upscaling 1-PPI synthesis.

Summary

- L-PPI supported on a monolithic substrate has been synthesized and tested on the bench-scale, achieving the BP1 CO_2 adsorption capacity target.
- Further work in BP2 will tailor the monolith substrate properties to optimize 1-PPI performance.
- Monolithic 1-PPI is a promising Next Gen adsorber material for the Global Thermostat DAC process.

Appendix

Organization Chart – Participants

Casey Huten – Lead R&D Technician

Sam Richardson – R&D Scientist

Prime Recipient

Sub-Recipient

Chris Jones – John F. Brock III School Chair & Professor Ryan Lively – Associate Professor Antonio Vallace – Postdoctoral Research Fellow

Colby Burtt – Lead Process Development Engineer

Gavin MacInnes – Lead Catalyst Development Engineer

Christopher Bertole (PI) – Director, Product and Applications Development

Travis Jones – Manager, Product and Applications Development Laboratory

James Altizer – Director, Product and Manufacturing Development

Sub-Recipient

Eric Ping – VP, Technology Development Miles Sakwa-Novak – Director, R&D Cassandra Hertz – Research Scientist II Yanhui Yuan – Sr. Development Engineer Abby Clabaugh – Development Engineer Joanie Racicot – Research Scientist

Organization Chart – Project Efforts

Prime Recipient

- □ Bench-scale test unit (SBST) design, build, and commissioning
- **G** Full-size I-PPI monolith impregnation and CO₂ capacity testing
- □ Single channel monolith modeling for optimization
- □ Monolith porous substrate optimization and prototype extrusion

Sub-Recipient

- I-PPI validation testing
- **CO₂ diffusion rate measurements**
- □ Transport modeling

Sub-Recipient

- I-PPI procurement and validation testing
- **CO₂** adsorption/desorption measurements
- Adsorption modeling
- I-PPI oxidative stability testing
- TEA and LCA

Project Schedule – Gannt Chart

Task Name		Resource		Year 1		Year 2		Year
	- 2.4	Names	Q-1	Q1 Q2 Q3	Q4	Q5 Q6 Q7	QI	Q9 Q10
	t Management and Planning			ç				P
	Project Management Plan (PMP)	CM						CM
	- PMP Update (100% Complete)	CM		10/15				
	Technology Maturation Plan (TMP)	CM			_		3 CM	
	- Initial TMP (100% Complete)	CM		4 12/15			1	
Deliverable 3	- Final TMP	CM					6/14	
	-Scale SBST (Task = 100% Complete)			ý				
	Design and Build (100% Complete)	CM		Dama CM				
Subtask 2.2 -	Commissioning (100% Complete)	CM		CM				
Milestone - 5	ingle Brick Tester Validated and Ready for Use with New Compositions (100% Complete)			\$ 3/14	n			
Task 3 - Experi	imental Testing and Models Development (90% Complete)							
Subtask 3.1 -	Single Channel Monolith Model Development (90% Complete)	CM			-	NCM		
	Adsorption / Desorption Testing and Model Development (90% Complete)	GT		*	-	6T		
Subtask 3.3 -	Diffusion and Transport Testing and Model Development (90% Complete)	GTRC		+2	-	GTRC		
Task 4 - I-PPI I	Production & Validation (95% Complete)			ý				
Subtask 4.1 -	Produce 1-PPI at kg scale (100% Complete)	GT		GT CT				
Subtask 4.2 -	Validate 1-PPI performance (80% Complete)	GTRC		GTRC				
Milestone - P	Production of Minimum 1kg of I-PP1 for Project Use (100% Complete)	GT		3/14				
Subtask 4.3 -	Assessment of I-PPI Scalability to Commercial Scale (90% Complete)	GT				GT		
	Impregnate Standard Monolith with I-PPI for SBST (100% Complete)	CM			CM			
Subtask 4.5 -	Testing of I-PPI Loaded Monolith on SBST (100% Complete)	CM	1		1	CM .		
Task 5 - Techno	o-Economic Analysis (TEA) and Process Modeling		1		_			
	Process Modeling	GT		+c	12	6T		
	Initial TEA and LCA	GT		1	E 2	GT		
Milestone - Sin	gle Channel Model (v 1) Ready to Optimize Substrate for I-PPI (Min 20% Improved)					9/14		
	tieved Capacity of I-PPI Loaded Standard Monolith > 1.00 on Single Brick Tester (100% Complete)					9/14		
and the second se	cess Model (v 1) Complete					9/14		
	tial TEA/LCA Complete	-				9/14		
							_	
	imental Testing and Models Refinement Single Channel Monolith Model Refinement	CM						
						7 .67		
	Adsorption / Desorption Testing and Model Refinement	GT				1.01		GTRC
	Diffusion and Transport Testing and Model Refinement	GIRU						- anne
	nt Oxidation Experiments to Validate I-PPI Stability							1
	Accelerated Oxidation Testing under Dry & Humid Conditions	GT				3.01	1.1	
	Incorporate Oxidation Kinetics into the Single Channel Monolith Model	CM				-		GT
	Quasi-Accelerated Humid Oxidation Testing	GT				-		
	pment, Synthesis and Testing of Optimal Monolith Substrate Formulation for I-PPI						_	1
	Single Channel Monolith Model Simulation Work to Develop Optimal Substrate for I-PPI in DAC	CM				30		
	Batching, Extrusion and Impregnation of Prototype Substrates for Optimal I-PPI DAC Performance	CM				- C-	3.04	
	Full-Size Brick of I-PPI Loaded Optimized Substrate Monolith Ready for Single Brick Sorption Tester						6/14	
	Testing of Optimized Monolith 1-PPI Compositions in Single Brick Sorption Tester	CM					E 3	CM
	o-Economic Analysis (TEA) and Process Modeling				1	1		
	Process Cycle Opportunity Analysis	GT						
	Process Model Updates	GT						
	Final TEA and LCA	GT					3.61	
Deliverable 4		GT					6/14	
Deliverable 5		GT					6/14	
	al TEA and LCA						· E/14	
Milestone - Fin	al TMP						6/14	
Milestone - Pro	cess Model (v 2) Complete						5/14	
	gle Channel Model (v 2) Complete							9/14
and the second se	idative Stability of I-PPI Validated							9/14
	tieved Capacity of I-PPI Loaded Optimized Monolith > 1.20 on Single Brick Tester							9/14