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Carbon dioxide removal A'”_fave'
for hard-to-avoid emissions | |

Agriculture

An estimate of the scale of hard-to-avoid emissions:

1.5-3.1 GtCO, /yr

CDRprimer.org: Section 1.4

A Bergman & A Rinberg (2021) "The Case for Carbon Dioxide Removal: From Science to Justice” CDRprimer.org



A new DAC process based on
concentrating the alkalinity of

agqueous solution
/\/\M
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The alkalinity concentration swing (ACS)
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The alkalinity concentration swing (ACS)
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Bicarbonate disproportionation reaction:

2HCO,” (€O, + CO,2 + H,0



ACS full system schematic
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Step 1-2:
Concentrating
alkalinity

We explore two
implementations of the ACS:

4 . )
1. Reverse osmosis

\ (pressure) )

2. Capacitive deionization
(voltage)



Using reverse osmosis

for the alkalinity

concentration swing

Reverse Osmosis Module

High
pressure K*, HCO;, CO42

pump

RO membrane

Purified water

Concentrated

Dilute
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Globally, reverse osmosis produces

35 billion cubic meters of water per year

Jones et al., 2019. “The State of Desalination and

Brine Production: A Global Outlook™
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ACS-RO: theoretical outgassing
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Carbon Engineering:
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Dead-end cell for preliminary concentration experiments
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Measuring the pH shift after concentrating
alkalinity

ﬂixperiment set-up:
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Higher feed concentrations outgasses more
CO, for the same concentration factor

Carbon
outgassed
for capture

(mM)

-

2 5 Concentration factor = 10 ®
2.0 i
i
1.5- -
1.0
., 3
0.5
0.0 - - . . |
0 10 20 30 40 50

Feed Concentration (mM)

Experiment conditions:

- K* cation

- Pressure = 20 bar
- Initial volume = 100ml

- Concentration factor = 10

~

J
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Higher concentration factor outgasses more

co,

Carbon
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for capture
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Experiment conditions:

- Na+ cation

- Pressure = 20 bar

- Initial volume = 300ml

-  Feed concentration 20, 50 mM
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Reverse osmosis crossflow setup operational:

Sterlitech CF042 cell + ASI high-pressure pump

ASI high-pressure pump:

Constant flow condition

Flow rate: 0-40 ml/min

3500 psi max

Continuous digital pressure reading
P sets shut off pressure for pump

CF042 Cell specs:

Membrane area: 42 cm?2
Hold-up volume: 17 ml

Typical permeate: 2-20 mL/min
Recommended feed: <2.5 LPM
Pressure limit: 2000 psi




Step 1-2:
Concentrating
alkalinity

We explore two
implementations of the ACS:

1. Reverse osmosis
(pressure)

p
2. Capacitive deionization

(voltage)

)




sing capacitive deionization for the
kalinity concentration swing

Capacitive Deionization Module

Current collector
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Carbon electrode
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Industrial examples of CDI facilities:

Us!ng.cap.autwe g s
deionization for the B) 5,000 m3 /day
alkalinity concentration s
swing

Capacitive Deionization Module

Current collector
+++++++++++++++

Carbon electrode K*

Suss et al., 2015. “Water desalination via
capacitive deionization: what is it and what
can we expect from it?”




ACS-CDI: Theoretical outgassing and energy
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Using capacitive / Lab ACS-CDI cell \

deionization for the
alkalinity concentration

swing

Capacitive Deionization Module

Current collector
+++++++++++++++

Carbon electrode

In collaboration with Slawomir Porada and Bert
Hamelers at Wetsus Institute, Netherlands
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Using capacitive
deionization for the

Concentrate plug output:
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Concentration factor for ~¥2.5 mM NaDIC
initial concentration: ~100x reached

Conductivity of concentrate plug

20000 |

15000 -

10000 +

Conductivity (uSfcm)

5000 1

40 min / 10 min
30 min /10 min
40 min / 15 min

Volume (mL)

Note: All measurements are integrated over ~1.4 mL of concentrate

0

Results for differing
adsorption/desorption times:

 Peak concentrations reached:
266 - 299 mM

* Conc. Factor: 108 - 120
e pCO2 limit: 90.1 - 103 mbar

* Theoretical CO2 capacity:
0.858 - 0.886 mM



Concentration factor for ~¥25 mM NaDIC
initial concentration: ~10x reached

Conductivity of concentrate plug

20000

15 min /10 min @ 1 A Results for differing

175007 somin/10min@250ma | adsorption/desorption times:
g 120007 * Peak concentrations reached:
E 12500 236 - 267 mM
2 10000 A * Conc. Factor: 10.0-11.4
€ 7500 e pCO2 limit: 6.59 — 7.65 mbar
£ 5000 * Theoretical CO2 capacity:
~ 4.87 —5.04 mM

2500 - A4

oV 4 )
- - - - Peak concentration enhancement:

e Cell architecture modification

Volume (mL)
e Electrode spacer reduction

/

Note: All measurements are integrated over ~1.4 mL of concentrate \



Key challenges with the ACS

* Absorption rate

* Contacting happens at pH 10-11, which is 30-100x slower than
Carbon Engineering’s contactor

* Required water

* ~30mM outgassed CO2 is roughly equivalent to a large RO facility
water handling

* Qutgassing rate
 Partial pressure scales (at least) linearly with concentration factor



Possible enhancements to the ACS

*Selectivity: bicarbonate/carbonate
separation

*Solvent enhancement: Weak acid/base
modification




Selectivity: bicarbonate/carbonate CDI Analysis
Alkalinity after concentrating: 1M
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Solvent enhancement: weak acid/ base
modification

BuissebinQ
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Alkalinity
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Solvent enhancement: weak acid/ base
modification

Strong base K+
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, What next for the aIkaIinity\
Main takeaways /

concentration swing?

have been assembled and
reached our key milestones:

10x (RO) and 100x (CDI)
concentration factors rate tradeoffs
* Energy analysis forthcoming

 TEA is forthcoming

concentration, concentration factor)
allowing for testing of energy-water-

2) Experimental results
qualitatively confirm theory:

* Higher feed concentration * Enhancements:
outgasses more CO, e Catalysts
* Higher concentration factor * Bicarbonate/carbonate

outgasses more CO,

selectivity
\- Weak acid/base enhancemy
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Reverse osmosis cycle: simple model

Feed solution I deal semi- Van’t Hoff Approximation:
(1) permeable

membrane
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Permeate Pressure
= RTAC
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Enhanced charge efficiency and reduced energy use in capacitive
delonization by increasing the discharge voltage
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ACS-CDI enhancement with bicarbonate
selectivity
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ACS-RO Theoretical Energy Estimates
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Energy of ACS CO, capture as a function of
concentration factor and A,
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Agueous carbonate phase diagram
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