Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide

Toly Rinberg, Andrew Bergman

Prof. Dan Schrag (PI), Prof. Mike Aziz (Co-PI)

Harvard University

August 2022 **DE-FE0031964**

Carbon dioxide removal for **hard-to-avoid** emissions

An estimate of the scale of hard-to-avoid emissions:

1.5-3.1 GtCO₂/yr

CDRprimer.org: Section 1.4

A Bergman & A Rinberg (2021) "The Case for Carbon Dioxide Removal: From Science to Justice" CDRprimer.org

A new DAC process based on concentrating the alkalinity of aqueous solution

Function of **alkalinity** (e.g., [K⁺])

The alkalinity concentration swing (ACS)

Dissolved inorganic carbon

Alkalinity

Rinberg*, Bergman*, Schrag, Aziz. "Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide." ChemSusChem (2021)

5

The alkalinity concentration swing (ACS)

Alkalinity

Rinberg*, Bergman*, Schrag, Aziz. "Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide." ChemSusChem (2021)

6

Bicarbonate disproportionation reaction:

$2HCO_3^- \rightarrow CO_2 + CO_3^{-2} + H_2O$

Rinberg*, Bergman*, Schrag, Aziz. "Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide." ChemSusChem (2021)

ACS full system schematic

We explore two implementations of the ACS:

Reverse osmosis
 (pressure)

2. Capacitive deionization (voltage)

Using reverse osmosis for the alkalinity concentration swing

Globally, reverse osmosis produces **35 billion cubic meters of water per year**

Jones et al., 2019. "The State of Desalination and Brine Production: A Global Outlook"

Rinberg*, Bergman*, Schrag, Aziz. "Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide." ChemSusChem (2021)

Dead-end cell for preliminary concentration experiments

Measuring the pH shift after concentrating alkalinity

Higher feed concentrations outgasses more CO₂ for the same concentration factor

Higher concentration factor outgasses more CO₂

3 Carbon 2 outgassed for capture (mM)50 mM | 20 bar 20 mM | 20 bar --0--0 20 30 10 Concentration factor

Experiment conditions:

- Na+ cation
- Pressure = 20 bar
- Initial volume = 300ml
- Feed concentration 20, 50 mM

Reverse osmosis crossflow setup operational: Sterlitech CF042 cell + ASI high-pressure pump

ASI high-pressure pump: Constant flow condition Flow rate: 0-40 ml/min 3500 psi max Continuous digital pressure reading P_{max} sets shut off pressure for pump

CF042 Cell specs: Membrane area: 42 cm2 Hold-up volume: 17 ml Typical permeate: 2-20 mL/min Recommended feed: <2.5 LPM Pressure limit: 2000 psi

We explore two implementations of the ACS:

Reverse osmosis (pressure)

2. Capacitive deionization (voltage)

Using capacitive deionization for the alkalinity concentration swing

Using capacitive deionization for the alkalinity concentration swing

Industrial examples of CDI facilities:

- A) 60,000 m3 / day
- B) 5,000 m3 /day

Suss et al., 2015. "Water desalination via capacitive deionization: what is it and what can we expect from it?"

ACS-CDI: Theoretical outgassing and energy

Rinberg*, Bergman*, Schrag, Aziz, "Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide." ChemSusChem (2021)

Using capacitive deionization for the alkalinity concentration swing

In collaboration with Slawomir Porada and Bert Hamelers at Wetsus Institute, Netherlands

Concentration factor for ~2.5 mM NaDIC initial concentration: <u>~100x reached</u>

Results for differing adsorption/desorption times:

- Peak concentrations reached:
 266 299 mM
- Conc. Factor: 108 120
- pCO2 limit: 90.1 103 mbar
- Theoretical CO2 capacity: 0.858 - 0.886 mM

Note: All measurements are integrated over ~1.4 mL of concentrate

Concentration factor for ~25 mM NaDIC initial concentration: <u>~10x reached</u>

Note: All measurements are integrated over ~1.4 mL of concentrate

Results for differing adsorption/desorption times:

- Peak concentrations reached:
 236 267 mM
- Conc. Factor: **10.0 11.4**
- pCO2 limit: 6.59 7.65 mbar
- Theoretical CO2 capacity: 4.87 – 5.04 mM

Peak concentration enhancement:

- Cell architecture modification
- Electrode spacer reduction

Key challenges with the ACS

Absorption rate

• Contacting happens at pH 10-11, which is 30-100x slower than Carbon Engineering's contactor

Required water

 ~30mM outgassed CO2 is roughly equivalent to a large RO facility water handling

Outgassing rate

• Partial pressure scales (at least) linearly with concentration factor

Possible enhancements to the ACS

•<u>Selectivity</u>: bicarbonate/carbonate separation

Solvent enhancement: Weak acid/base modification

<u>Solvent enhancement</u>: weak acid/ base modification

<u>Solvent enhancement</u>: weak acid/ base modification

Alkalinity

Main takeaways

1) ACS-RO and ACS-CDI systems have been assembled and reached our key milestones: 10x (RO) and 100x (CDI) concentration factors

2) Experimental results qualitatively confirm theory:

- Higher feed concentration outgasses more CO₂
- Higher concentration factor outgasses more CO₂

What next for the alkalinity concentration swing?

- ACS is highly tunable (feed concentration, concentration factor) allowing for testing of energy-waterrate tradeoffs
 - Energy analysis forthcoming
 - TEA is forthcoming
- Enhancements:
 - Catalysts
 - Bicarbonate/carbonate selectivity
 - Weak acid/base enhancements

Acknowledgments

Aziz Lab

- Prof. Mike Aziz (Co-PI)
- Andrew Bergman
- Martin Jin
- Tommy George
- Eric Fell
- Jordan Sosa
- Dawei Xi
- Kiana Amini
- Thomas Cochard

Concept paper:

Rinberg*, Bergman*, Schrag, Aziz. **"Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide."** ChemSusChem (2021)

rinberg@g.Harvard.edu

Funding sources:

 DOE Office of Fossil Energy and Carbon Management

• Harvard Climate Change Solutions Fund

Collaborators: CDI cell construction and analysis done in collaboration with Slawomir Porada and Bert Hamelers at Wetsus Institute in the Netherlands

ADDITIONAL BACKUP SLIDES

Reverse osmosis cycle: simple model

Van't Hoff Approximation:

34

Rinberg*, Bergman*, Schrag, Aziz. "Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide." ChemSusChem (2021)

Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage

T. Kim^{a,b}, J.E. Dykstra^{a,c}, S. Porada^a, A. van der Wal^c, J. Yoon^b, P.M. Biesheuvel^{a,d,*}

^a Wetsus, centre of excellence for sustainable water technology, Oostergoweg 7, 8911 MA Leeuwarden, The Netherlands

^b School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-742, Republic of Korea

^cDepartment of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands

^d Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands

ACS-CDI enhancement with bicarbonate selectivity

ACS-RO Theoretical Energy Estimates

Energy of ACS CO_2 capture as a function of concentration factor and A_1

Aqueous carbonate phase diagram

