Next Generation Fiber-Encapsulated Nanoscale Hybrid Materials for Direct Air Capture with Selective Water Rejection

Project Number DE-FE0031963

A.-H. Alissa Park, Columbia University Yong L. Joo, Cornell University Michelle K. Kidder, ORNL

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Program Overview

- a. Funding: \$800,000 DOE + \$200,000 Cost Share
- b. Overall Project Performance Dates: 01/01/2021 10/31/2022
- c. Project Participants:

Columbia University (lead institution: Alissa Park (PI))

Cornell University (Yong L. Joo)

Oak Ridge National Laboratory (Michelle Kidder)

d. Overall Project Objectives

We aim to address direct air capture (DAC) challenges by developing the **next generation fiber-encapsulated DAC sorbent** employing an electrospun, solid sorbent embedded with liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) that will **selectively reject water while allowing facile CO₂ diffusion.**

Team Members

Design, Synthesis and Testing of NOHMs for CO₂ capture

Fabrication of nanofibers via electrospinning technology

Design and characterization of polymeric materials

Ah-Hyung Park (PI) Annie Lee (GRA)

Jeffrey Xu (Postdoc) Dongjae Kim (Postdoc)

Kyle Kersey (GRA) Yong Joo (co-PI)

Michelle Kidder (co-PI)

Technology Background

Water-lean Solvents for CO₂ Capture

Introduction of nanoparticles increases the viscosity of the system → Need to develop **novel carriers** of NOHMs

Encapsulation of NOHM-I-PEI for CO₂ Capture

Rim et al., Advanced Functional Materials (2021)

Accelerated CO₂ Sorption Kinetics of NIPEI via Increased Interfacial Area

Rim et al., Advanced Functional Materials (2021)

Gas-Assisted Electrospinning

- Sheath of high-speed air promotes faster solvent evaporation than in traditional electrospinning
- Able to utilize faster flow rates to decrease processing time

Core-Sheath Fiber Morphology

• Coaxial electrospinning allows control of internal fiber assembly

SiO₂ Nanoparticles in PI-*b*-PS Nanofibers

Kalra and Joo, *Small* (2008), (2009)

Alternating Layers of PI-*b*-PS Nanofibers

Kalra and Joo, el al., Macromol. (2006), Adv. Mater. (2006)

Hollow V₂O₅/SiO₂ Nanofibers

Panels and Joo, J. Nanomater. (2006)

Core (SiO₂)/Sheath (Ni) Nanofibers

Objective: To address direct air capture (DAC) challenges by developing the **next generation fiber-encapsulated DAC sorbent** employing an electrospun, solid sorbent embedded with liquid-like Nanoparticle Organic Hybrid Materials (NOHMs) that will **selectively reject water while allowing facile CO₂ diffusion**.

Technical Approach/Project Scope

- Experimental design and work plan
- •Q1-Q2: Design and synthesis of NOHMs and polymers for DAC
- •Q2-Q5: Fabrication of NOHMs/PIM coaxial fibers and analysis
- •Q2-Q5: Fabrication of NOHMs(core)/ceramic(sheath) nanofibers and analysis
- •Q3-Q6: Fabrication of air filters based on deposition of NOHMs/PIM or ceramic nanofibers
- •Q4-Q7: Process modeling and TEA/LCA

Decision Points	Success Criteria
Can NOHMs be synthesized for	At least three of the synthesized NOHMs can effectively capture
DAC?	CO_2 at the same levels as conventional DAC sorbents.
Can the fiber-encapsulated NOHMs	The developed fiber-encapsulated NOHMs should be able to
capture CO ₂ faster?	capture CO_2 at a rate 50% faster than that of NOHMs.
Can the fiber-encapsulated NOHMs	The developed fiber-encapsulated NOHMs should reject at least
sorbent selectively reject water?	30% of water in the system.
Are fibers impregnated with	The first generation of fiber-encapsulated NOHMs generated from
NOHMs stable for multiple cycles?	this project should be stable at least 10 DAC cycles .

Progress and Current Status of Project

PIM-1 based **NOHMs electrospun fibers**

Incorporation of Amine Solvent into PIM-1 Electrospun Fibers

Developed procedures to electrospin uniform PIM-1 composite fibers at high flow rate

Able to incorporate amine sorbents, both tethered (i.e., NOHMs) and untethered (free polymers)

Morphology shows flat fibers with 5-15 µm width and 1-1.5 µm thickness

PIM-1 Encapsulated **NIPEI : Improved** Capacity & Kinetics of CO₂ Capture

- Sonication and mixing of electrospinning solution
 Smaller NIPEI droplets
- Encapsulation by highlypermeable polymer
 → Significantly reduced mass transfer limitation

Average: 1.1 mmol CO₂ /g sorbent ±0.04

Stable Cycling of CO₂ capture and release

Capture: 1 atm CO₂, 25 °C Regeneration: 1 atm N₂, 120 °C

PIM-1 Encapsulation of Different Types of Amines and NOHMs

PIM-1/TEPA fibers offer highest porosity and capture capacity under dry air conditions

Recyclability of 50:50 NIPEI:PIM

2 hr recycle sorption time average 1.08 mmol CO_2/g sorbent ± 0.04

Initial activation with N_2 at 120 °C for 2 hours Sorption: 1 atm CO₂, 25 °C – 2hr Desorption: 1 atm N_2 , 120 °C 2hr

Recyclability of 50:50 NIPEI:PIM

Thermal stability of NOHM-I-HPE is lower than HPE in N_2 , but higher in air

Experimental conditions: 20-600 °C, HR = 5-20 °C/min, flowrate = 40 mL/min

Presence of O_2 does not affect activation energy of NIHPE thermal degradation

Free polymer stability is significantly reduced in the presence of O_2 , while that of NOHM-I-HPE remains relatively unchanged

Feric et al. Energy Fuels, 2021. 35 (23), pp. 19592-19605.

PAN/OPSZ based **NOHMs electrospun fibers**

Using Commercially-available Polymers/Ceramics as Shell Materials

processing and cures to SiO₂ in air

 Mutually soluble with NOHM-I-PEI in DMF solvent

PAN/OPSZ-Encapsulated NIPEI: Distribution of NIPEI within Nanofibers

PAN/OPSZ-encapsulated NIPEI Fibers: Sorbent Loading vs. Capture Capacity

NOHM-I-PEI / (PAN & OPSZ) Fibers

Fiber morphology

→ trade-off b/t higher sorbent loading vs. gas transport & capacity

CO₂ capture capacity and cyclability of PAN/OPSZ/NIPEI fibers

PAN/OPSZ Fiber Mats Exhibit Low Pressure Drop

Fiber mats can be engineered to have lower pressure drops compared to traditional contactors

TEA of Sorbent Manufacturing Process

Large manufacturing plant - 30 ton/yr Other fixed costs 12% Raw materia Labor 1 16% 40% Electrici tv Capital (Electro spinnin depreci ation g) 5% 27% Total: \$226/kg of solid sorbent nanofiber Current commercial solid sorbent price range1: \$15 -100/kg

Sensitivity analysis of solid sorbent manufacture process from base cost - \$226/kg

Scaling up solid sorbent manufacture process from 1 ton/yr to 30 ton/yr decreases cost by nearly 50% depicting economies of scale effect (\$525/kg vs \$226/kg)

¹National Academies of Sciences, Engineering, and Medicine 2019. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: The National Academies Press. <u>https://doi.org/10.17226/25259</u>

Other fixed costs include Maintenance, taxes, miscellaneous, etc.

LCA of Sorbent Manufacturing Process

Comparing the environmental impacts (cradle to gate) of manufacturing: Novel solid sorbent vs. existing solid sorbent in literature

Based on ISO 14040 series guidelines

• The value of the **global warming potential** of the novel sorbent $(1.29 \times 10^{-3} \text{kg CO}_2 \text{ per kg CO}_2 \text{ captured by adsorbent})$ lied between those shown by other solid sorbents.

Sorbent regeneration using non-thermal energy transfer

Schematic design of mag-NPEI-SIPs for Non-Thermal Energy Transfer

Regeneration of CO_2 using microwave and the effect of magnetic particles

Plans for future testing

Experimental setup for Breakthrough Testing

Goal: Test the effect of humidity and multiple cycles under DAC condition

Current optimization:

Reactor size, flowrate, and sample loading

Rapid Regeneration Using Microwave desorption

Summary

- Successfully synthesized NOHMs with oxidative thermal stability
- Electrospinning process and parameters have been optimized for PIM-1 or PAN/OPSZ + amine hybrid fibers
- Morphological control gives uniform fiber dimensions with consistent incorporation of liquid/liquid-like amine sorbents
- Tested encapsulated NOHMs and shown promising thermal cyclability and CO₂ capture performance across multiple loading/regeneration cycles
- High-level TEA estimates that a large manufacturing plant (30 ton/yr) for electrospun PAN/OPSZ/NIPEI fiber sorbents yields \$226/kg sorbent
- Non-thermal energy transfer (e.g., microwave) can be used to increase desorption kinetics, which could be further enhanced via adding magnetic particles to NOHMs

Acknowledgements

- Students and Collaborators
- Tony Feric at DOE
- Guanhe Rim
- Tom Ferguson, Max Stonor, Wanlu Li, Hui Zhou
- Ming Gao, Wei Yu, Sara Hamilton
- Junfeng Wang
- Youngjune Park (Gwangju Institute of Science and Technology, Korea)
- Andrew Lin (National Chung Hsing University, Taiwan)
- Camille Petit (Imperial College London, UK)

Appendix

Incorporation of Amine Solvents into PIM-1 Electrospun Fibers

Internal mesoporosity visible inside fibers containing NIPEI or PEI

High contrast with background suggests uniform NIPEI and PEI incorporation

Solid-phase NITEPA apparent as isolated crystals, whereas untethered TEPA shows internal voids due to low viscosity and leaching

Gantt Chart

			Start	End	Q1	Q2	Q3
			date	date	01/01/-2021-03/31/21	04/01/21-06/30/21	07/01/21-09/30/21
Columbia	Task 1	Project management and planning					
		ST 1.1 – Project Management Plan	1/1/21	3/31/21			
		ST 1.2 – Technology Maturation Plan	6/30/22	9/30/22			
		ST 1.3 – Technology EH&S Risk Assessment	6/30/22	9/30/22			
Columbia	Task 2	Design and Synthesis of NOHMs for CO2 Capture	1/1/21	3/31/21		11	
ORNL		ST 2.1. Synthesis of NOHMs with different amine group	1/1/21	9/30/22			
Cornell		ST 2.2. Optimization between CO2 capture capacity and viscosity of NOHMs	1/1/21	3/31/21			
		ST 2.3. Characterization and evaluation of pure NOHMs for encapsulation and CO2 capture	1/1/21	3/31/21			
ORNL	Task 3	Fabrication of NOHMs/PIM coaxial nanofibers	4/1/21	3/31/22			
Cornell		ST 3.1. Enhancement of PIM's hydrophobicity, thermal stability, and mechanical properties	4/1/21	9/30/22			
Columbia		ST 3.2. Electrospining of NOHMs/PIM coaxial nanofibers	7/1/21	9/30/22			
		ST 3.3. Charaterization of NOHMs/PIM coaxial nanofibers	7/1/21	9/30/22			
Cornell	Task 4	Fabrication of NOHMs (core)/ceramic (sheath) nanofibers	4/1/21	3/31/22			
ORNL		ST 4.1. Control hydrophobicity of ceramic (OPSZ)	2/1/21	9/30/21			
Columbia		ST 4.2. Conventional monoaxial electrospining of NOHMs and OPSZ mixture	7/1/21	3/31/22			
		ST 4.3. Coaxial electrospining of NOHMs (core) and OPSZ (sheath)	7/1/21	3/31/22			
		ST 4.4. Characterization of NOHMs/ceramic nanofibers	7/1/21	3/31/22			
		ST 4.5 Compare perma-selectivity of composite PIM-1/NIPEI membranes vs. fiber-encapsulated air filter	1/1/22	9/30/22			
Cornell	Task 5	Fabrication of air filters with NOHMs/(PIM or ceramic) nanofibers	7/1/21	9/30/22			**
Columbia		ST 5.1. Deposition of nanofibers on a coarse filter media	7/1/21	9/30/22			
ORNL		ST 5.2. Characterization of nanofibers bearing air filter media	6/30/22	9/30/22			
		ST 5.3. CO2 capture using air filters - fixed bed testing	6/30/22	9/30/22			
		ST 5.4. Long term CO2 capture testing in a lab scale unit with simulated air (with moisture)	6/30/22	9/30/22			
		ST 5.5. Develop thermodynamic and kinetic models for laboratory phase equilibria results	10/1/21	9/30/22			
		ST 5.6 Test sorbent regeneration using microwave non-thermal energy coupled with fluidized bed	1/1/22	9/30/22			
ORNL	Task 6	Process Modeling and TEA/LCA	10/1/21	9/30/22			
Columbia		ST 6.1. Development of full-scale process models for direct air capture	10/1/21	9/30/22			
Cornell		ST 6.2. Operation of process models to achieve DOE targets	1/1/22	9/30/22			
		ST 6.3. Economic Analysis and Life Cycle Analysis	4/1/22	9/30/22			

Gantt Chart

Q4	Q5	Q6	Q7	
10/01/21-12/31/21	01/01/2022-3/31/2022	04/01/2022-06/30/2022	06/30/2022-09/30/2022	
	-			
	Av 1			
	<u>}</u>			
			•	

PAN/OPSZ-Encapsulated NIPEI: Distribution of NIPEI within Nanofibers

Fiber cross-section via Epoxy, Microtome and TEM (Lead Citrate Stain)

Kersey, K. et al., Manuscript in Review

Opportunities for Collaboration

Collaboration among team members: PIs have distinct expertise (Park: CO_2 capture materials and mechanistic studies, Kidder: Material development, advanced characterizations and mechanistic understanding in capture and conversion, Joo: electrospinning and device fabrication) and have a long history of strong collaborations. The proposed hybrid DAC materials require the expertise from all three areas.

List potential areas of complementary work that others may contribute to this technology

- Scale-up: DAC companies (e.g., Climeworks, Global Thermostat), Energy companies (e.g., Shell, TOTALEnergies, Saudi Aramco)
- Engineering design and fabrication: HVAC technology companies
- The utilization of captured CO₂: Conversion R&D groups

Rapid Regeneration Using Microwave desorption

Microwave-transparent silica reactor

Capture capacity

Energy consumption

Microwave regeneration process could be further enhanced via adding magnetic particles

Recyclability of Thermally Stabile NIPEI-SIPs

1 atm CO₂ capture and microwave desorption (PAN:OPSZ - NIPEI)

- Capture capacity is in order of $7:3 \rightarrow 8:2 \rightarrow 9:1$.
- Energy consumption very similar but still very high! \rightarrow can be improved by putting magnetic particles