

Gradient Amine Sorbents for Low Vacuum Swing CO₂ Capture at Ambient Temperature

DE-FE0031958

Steven S. C. Chuang
The University of Akron

U.S. Department of Energy

National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Program Overview

Funding

Total project funding

o DoE share: \$752,002

o Cost share: \$200, 236

Overall Project Performance Dates

1/1/2021 - 12/31/2022

Project Participants

- PI: Steven. S. C. Chuang, Akron
- Students: J. King, Huhe, S. Billy, S. Starkey, and P. Hollopeter
- Co-PI: Redouane Begag, Aspen
 Nicholas Leventis, Aspen

Overall Project Objectives

- To develop a novel VSA process by designing, fabricating, and refining the structure of amine sites which can accommodate various climate conditions, testing the low vacuum swing process, evaluating scalability, and cost and life cycle analysis.
- To determine the cost-effectiveness of the proposed technology.

Technology Background

Temperature Swing Adsorption (TSA) Vacuum Swing Adsorption (VSA)

1 meter

 $W_{min} = \Delta G_{mix} = -T\Delta S_{mix} = RT (x_1 ln x_1 + x_2 ln x_2)$

 T_0 = heating temperature

Lost work: $LW_{TSA} = Q_H (1 + \frac{T_0}{20 + T_0})$

Separation efficiency: $\eta_{TSA} = \frac{W_{min}}{LW_{TSA}}$

Lost work: $LW_{PSA} = RT \ln \left(\frac{1 \text{ atm}}{P_{VAC}} \right)$

Separation efficiency: $\eta_{PSA} = \frac{W_{min}}{LW_{PSA}}$

Technical advantages:

- Operation at ambient temperature without the input and removal of thermal energy of the sorbent bed.
- Scalable and modular design

Technical challenges

- Identification of amine sites for weakly adsorbed CO₂.
- Production of high purity CO₂ (>99%)
- Fabrication of hierarchical sorbents with a high density of weakly adsorbed CO₂ sites.
- Construction of a low leakage vacuum swing unit.

TSA

- Sorbent degradation
- Thermal energy

VSA

- Ambient temperature
- Low energy

Technology Background

(b)

- In situ infrared (IR) spectroscopy coupled with mass spectroscopy (MS) allows simultaneous monitoring the dynamics of adsorption and desorption of strongly and weakly adsorbed CO₂ on amine sorbents.
- The project goal is to populate the porous and stable structure with high density of weakly adsorbed CO₂ sites for the vacuum swing adsorption.

Identification of weakly adsorbed CO₂ sites allows design and preparation of a hierarchically structure of amine sorbent for low vacuum swing adsorption

Technical Approach/Project Scope

a. Experimental design and work plan

- Preparation, characterization, and test of sorbents with weakly adsorbed CO_2 sites
- Fabrication and test of a Kg scale vacuum swing adsorption unit for capture of CO₂ from air.

b.

Task/ Subtask	Milestone Title & Description	Planned completion date	Actual Completion Date	Verification method
4.0	Determination of CO ₂ capture capacity and stability (4 -15)	11/01/2021		Quarterly report
5.0	Fabrication of a Kg scale unit. (12-18)	11/01/2021		Quarterly report
6.0	Vacuum swing test (6-18)	02/01/2022		Quarterly report
7.0	Cost Analysis and Life Cycle Analysis.	12/31/2022		Quarterly report

c. Project success criteria

Decision	Date	Success Criteria							
Point									
1	12/1/2021	Both sorbent plates and sorbent particles exhibit the same							
		level in vacuum swing adsorption CO ₂ capture capacity.							
		Reaching the target listed in State-Point Data							
2	2/1//2022	Completing the construction of the Vacuum Swing							
		Adsorption unit							

Risk Management

Description of Risk	Probability	Impact	Overall	Risk Management (Mitigation and Response Strategies)
Financial Risks:				
Commitment to cost-sharing	Low	High	Low	Cost-sharing has been allocated and committed by the U. Akron.
Cost/Schedule Risks:				
Acquiring chemical precursors and component	Medium	High	Moderate	Alternative suppliers
Technical/Scope Risks:				
Equipment maintenance	Moderate	High	Moderate	Regular inspection and calibration
Preparation of Kg scale sorbent	Moderate	Moderate	Moderate	Optimizing the sorbent preparation methods.
Human Resource Risks:				
Availability of manpower to execute project	Moderate	Moderate	Moderate	Recruit domestic undergraduate students as assistants
Continuing employment of each team member	Low	High	Moderate	Incentives for retaining the talents
Management/Planning/ Oversight Risks:	Ţ			
Capability to coordinate	Low	High	Moderate	Regular and informal meetings and communications
ES&H Risks:				
Environmental	Low	Low	Low	Use of chemicals with low toxicity
External Factor Risks:				
Pandemics	High	High	High	Minimize interpersonal contacts

CO₂ capture capacity for thermal swing adsorption

Additional Photos of Samples and Lids

				_			
Sample	CO2	CO2	CO2	Avg	Stdev	Name Rar	nking
	Capture	Capture	Capture	AVB	Stact	Nume Runking	
1	1.06	1.12	0.98	1.05	0.07	KD75BMSPA (TMS)	7
2	1.09	1.29	1.11	1.16	0.11	KD75BMSPA	5
3	0.85	1.43	0.98	1.09	0.30	KD75BMSPA	6
4	0.67	1.12	0.92	0.90	0.22	KD75BMSPA (TMS)	10
5	0.66	0.40	0.65	0.57	0.15	KD100BMSPA	16
6	0.47	0.87	0.68	0.67	0.20	KD100BMSPA (TMS)	15
7	1.36	1.34	1.17	1.29	0.10	KD100BMSPA (TMS)	4
8	0.64	0.80	0.74	0.73	0.08	KD100BMSPA (TMS)	13
9	0.69	0.69	0.63	0.67	0.03	KD100BMSPA (TMS)	14
10	0.75	0.77	0.72	0.75	0.03	KD100BMSPA	12
11	1.50	1.18	1.40	1.36	0.17	KD75BMSPA (TMS)	3
12	1.37	1.56	1.32	1.42	0.12	KD75BMSPA	2
13	1.21	1.00	0.77	0.99	0.22	KD100BMSPA	8
14	1.06	0.99	0.72	0.92	0.18	KD100BMSPA (TMS)	9
15	1.49	1.89	1.07	1.49	0.41	KD100BMSPA (TMS)	0
16	0.31	1.24	1.07	0.87	0.50	TPSENA	0

KD100BMSPA: contains 4.92 mmol amine/g KD75BMSPA: contains 5.96 mmol amine/g

Technology Approach

Time (min)

Time (min)

- (a) In situ infrared (IR) spectroscopy coupled with mass spectroscopy (MS) allows simultaneous monitoring the dynamics of adsorption and desorption.
- (b) MS profiles of the gaseous effluent from the IR cell during a CO_2 capture cycle: (i) pretreatment, (ii) CO_2 adsorption, (iii) Ar purge to remove weakly adsorbed CO_2 , (iv) TPD (temperature-programmed desorption) to remove strongly adsorbed CO_2 .
- (c) CO₂ capture from air and CO₂ capture from 0.2% CO₂.

PEG / amino acid / silica (molar ratio: 1 : 1 : 1)

- PEG/amino acid provides both strongly and weakly adsorbed sites for CO₂ and water.
- CO2 capacity and rate from 15% > CO2 capacity and rate from air

Cross-link amine

- The rate of CO₂ adsorption and desorption
- The density of weakly adsorbed CO₂ sites

VSA Scheme

- Adsorption by flowing a 0.04%
 CO₂ stream over a sorbent bed
- Desorption of weakly adsorbed species by vacuum

Data collection

Obtaining the concentration profiles of the effluent form the sorbent bed with adsorbed CO₂ under 8 psi vacuum determined by (a) MS before vacuum pump, (b) IR gas cell after vacuum pump.

A laboratory scale (5-10 cm³) VSA unit with a CO₂ sensor

04_03_22 VSA and TSA experiments on carbon heater Chemicals: Adhesive, Amine, fiber veil.

- Concentrated CO_2 , > 90%, was produced from VSA at 3 psia.

Scale-up potential – VSA in series

Future testing/development

- Improve the sorbent formulation and monolithic structure
- Integration with automatic control

Summary

Key findings:

- The density of weakly adsorbed CO₂ sites on amine sorbents can be controlled by the types of additives and polyamines.
- Some amine sorbents are able to adsorb CO₂ prior to H₂O; to desorb CO₂ prior to H₂O under flowing inert gas and vacuum.
- Concentrated CO2, > 90%, was produced from VSA at 3 psia.
- Gradient amine layer can be achieved by sequential layer-by-layer deposition of amine-PEG (polyethylene glycol) onto the porous polymer pellet

Lesson learned:

- Fabrication of a laboratory scale VSA (vacuum swing adsorption) unit is highly challenging because of the lack of reliable fittings and valves for holding vacuum.

Future Plan:

- Search for reliable components for building a one-liter VSA unit.
- Fine-tune the formulation of amine sorbents and monolithic structure

Take-away:

- VSA for CO₂ capture is technically feasible.

Teams and Facilities

Appendix

 These slides will not be discussed during the presentation but are mandatory.

Project Timeline

The Nature of Adsorbed Carbon Dioxide on Immobilized Amines during Carbon Dioxide Capture from Air and Simulated Flue Gas Weakly ads. Strongly ads. Total ads. 15 % Weakly adsorbed CO₂ NH₂ NH₂ 1 % Absorbance Strongly adsorbed CO2 2 0.2 % 0.04 % 0 2500 3500 3000 2000 1500

Wavenumber / cm⁻¹

Scope of Work

Task 2.0 – Sorbent Preparation and fine-tuning Subtask 2.1 – Fabrication of hybrid sorbents

Focus on the development of the hierarchical polymer structure to immobilize the sorbent particles.

<u>Subtask 2.2 – Preparation of amine-functionalized</u> <u>aerogel</u>

8 amine-aerogel samples have been prepared.

Task 4.0 – Determination of CO₂ capture capacity and stability

CO₂ capture capacity for thermal swing adsorption have been determined. Investigate the approaches to accelerate desorption of weakly adsorbed CO₂.

Task 5.0 – Fabrication of a kg scale vacuum swing adsorption (VSA) unit

A tubular absorber with vacuum seals have been tested.

Hydrophilic Crosslinked Porous Poly(vinyl alcohol)

Objective: Prepare a porous PVA (Poly(vinyl alcohol))film impregnated with PEI.

*Base = PVA 1.5g Base 3ml CL *CL = Crosslinker = Glutaraldehyde

 1.5g Base
 1.5g Base

 3ml CL
 3ml CL

 0.04g PEI
 0.02g PEI

 1g Acetone
 800ml Acetone

 (pH = 1)
 (pH = 1)

Technology Background

What are Aerogels?

Nanoporous solid with a specific structural morphology.....

- Open structure up to 99% open porosity
- Pore diameters = ~ 10-40 nm on average
 (< 1/30,000th the width of a human hair)
- Nanoporosity slows heat and mass transport, providing record-low thermal conductivity values.

 $Si(OR)_4 + 2 H_2O \rightarrow (SiO_2)_x + 4 ROH$

....and the method of production

- Sol-gel Processing
- 2. Aging
- 3. Extraction (solvent exchange)
- 4. Drying (with supercritical fluids)

Scope of Work

Task 2.0 – Sorbent Preparation and fine-tuning Subtask 2.2 – Preparation of amine-functionalized aerogel

Subtask 2.2.1— Amine Functionalized
Aerogel (AFA) Sorbent Further Optimization

The Recipient will design AFA formulation to maximize hydrophobicity with different primary, secondary and tertiary amines for CO2 capture. The diamine linker with a secondary amine for weakly adsorbed CO2 will be incorporated into AFA formulation

Optimum bead sorbent will be selected and produced for scale-up production to an amount up to 1 kg.

Drop of water on surface

Hydrophobic aerogel monolith

Fiber-reinforced hydrophobic aerogel

Reactions for forming silica gel.

Scope of Work

AFA Bead Fabrication

- The optimum AFA formulation will be used to fabricate AFA sorbents in the form of beads.
- The bead size and bead quality will depend on the:
 - Gel time of the AFA sol; and, the
 - Mixing speed and temperature of the "dispersing medium"

Type #1 Sorbent Beads

- Translucent
- $-300-900 \mu m$
- ~ 0.7 g/cc- packed beads
- $S_{BET} = 389 \text{ m}^2/\text{g}$
- Ave. Pore diameter = 10 nm

Type #2 Sorbent Beads

- Opaque
- $-300-1,000 \mu m$
- ~ 0.8 g/cc- packed beads
- $S_{BET} = 292 \text{ m}^2/\text{g}$
- Ave. Pore diameter = 22 nm

Our results									
Amine	Support	Ads. t _{1/2} /s	Conc. CO ₂	T _{ads} °C	CO ₂ capacity (mmol/g)	Amine efficiency (mol CO ₂ /mol N)	Fraction of weakly-adsorbed CO ₂	Ref	
PEG/lysine (0.3:1)	$ m SiO_2$	10.5	15% in Ar		0.61	0.18	39%		
PEG/lysine (1:1)		-		l H	0.46	0.21	87%		
PEG/lysine (2:1)		-				0.19	0.13	85%	
Glycerol/lysine (1.8:1)		2.7			0.94	0.28	60%	Link	
PEG/lysine (0.3:1)		16.5			0.58	0.17	24.5%		
PEG/lysine (1:1)		-	Air		0.41	0.19	87%		
PEG/lysine (2:1)		-			0.15	0.10	88%		