

ADVANCED COOLING TECHNOLOGIES

The Thermal Management Experts | www.1-ACT.com

Plasma-Assisted Methane Reforming and Catalyst Decoking

DE-SC0019664

Yue Xiao Advanced Cooling Technologies, Inc. 08/16/2022

U.S. Department of Energy National Energy Technology Laboratory 2022 Carbon Management Project Review Meeting

Project Overview (1/2)

- Funding and Performance Dates
 - Source: DOE
 - Phase I: \$149,998 (02/2019 11/2019)
 - Phase II: \$1,049,923 (04/2020 04/2022)
 - Phase IIA: \$1,149,997 (04/2022 04/2024)
- Project Participants
 - Dr. Yue Xiao, Dr. Jay Uddi, Dr. Chien-Hua Chen (Advanced Cooling Technologies, Inc)
 - Prof. Jonas Baltrusaitis (Lehigh University)

Project Overview (2/2)

Overall Project Objectives

• Low-temperature syngas production through plasmaassisted methane reforming

 $CO_2 + CH_4 = 2H_2 + 2CO$

 $CO_2 + CH_4 + H_2O \rightarrow xH_2 + CO, x=1-3$

- Improve reactor performance
- Evaluate coking formation and decoking techniques
- Plasma physics modeling
- Scaling analysis and scaled-up reactor design
- Industrial process flow analysis and TEA

Background (1/2)

Syngas (CO+H₂): critical mid-product

Syngas H₂:CO Ratio	Products	
≤1	Ethanol	
~2	Methanol → Acetic Acid, Ethylene-Propylene, etc.	
≥2	Fischer-Tropsch Process → Wax, Gasoline, etc.	
≥50	Hydrogen	

Hernández et al., Green Chem., 19 (10) 2326–2346 (2017).

Current mainstream: Steam Methane Reforming (SMR)

 $CH_4 + H_2O \rightarrow 3H_2 + CO, \Delta H=206 \text{ kJ/mol}$

• High H₂/CO ratio: 3–5

Alternative: Dry Methane Reforming (DMR) $CH_4 + CO_2 \rightarrow 2H_2 + 2CO, \Delta H=247 \text{ kJ/mol}$

- Consumes CO₂
- Problems:
 - High temperature: 700–900 °C
 - <u>Coking</u>: deactivates catalyst, reformer clogging...

Background (2/2)

Plasma-Assisted Dry Methane Reforming (PADMR) and catalyst decoking

- Non-thermal plasma \rightarrow Lower temperature reactions
- High energy electrons enables unique reaction pathways \rightarrow Coke reduction
- Synergistic effects of plasma-catalysis reactions \rightarrow Higher efficiency
- Dielectric barrier discharge (DBD) plasma adopted

Kameshima et al., Int'l J. of Plasma Enviro. Sci. & Tech. 9(1),201797785 (2015).

Concept (1/1)

Cylindrical DBD reactor

MS: Mass Spectroscopy

Plasma-Assisted Dry Methane Reforming (PADMR)

- Cylindrical DBD plasma reactor
- Discharge gap l_g : 0.5–5 mm for packed bed and catalyst loading
- Additional heating and insulation

Progress (1/8): Efficiency Enhancement

Cylindrical Reactor Optimization

1. Reduced Gap size l_g : Electric field $V/l_g \uparrow$ 2. "Burst Mode" power

- Same power, duty cycle ↓, conversion↑
 - ISO9001 & AS 9100 CERTIFIED | ITAR REGISTERED | SBIR DATA RIGHTS

5e-4

3. Eliminate secondary surface discharge
→ Energy Waste ↓

Progress (2/8): Efficiency Enhancement

Cylindrical Reactor Optimization:

• Room temperature test without catalyst: 89% higher than the end of Phase I (2020).

ISO9001 & AS 9100 CERTIFIED | ITAR REGISTERED | SBIR DATA RIGHTS

Progress (3/8): Efficiency Enhancement

Advanced catalysts with coke resistance

- La_{0.9}Ce_{0.1}NiO₃ perovskite catalyst on CeO₂ support
 Sa
 - Industrial process consideration:
 - Tests with intermediate temperature (up to 550 °C)
 - Maximize CH₄ conversion to eliminate separation
 - 90% CH_4 conversion, 16% CO_2 conversion

Ranganathan, ... Uddi et al. Journal of CO₂ Utilization 32 11–20 (2019).

Uddi et al. Invited Talk at 23rd Int'l Conf. on Solid State Ionics, EF09-04 (2022).

Progress (4/8): Efficiency Enhancement

- High CH₄ conversion for industrial process
- Syngas with high CO composition
- Lower energy cost

DBD data replotted from Snoeckx & Bogaerts, *Chem. Soc. Rev.*, **46**, 5805-5863 (2017).

Progress (5/8): Plasma-Assisted Bi-Reforming

 $CH_4 + CO_2 + H_2O \rightarrow \mathbf{x}H_2 + CO$, 1<x<3

- Complex reactions: DMR, SMR, WGS, etc.
- Syngas directly used for sequential processes
- Commercial interests: Linde's DRYREF bi-reforming pilot plant

steam supply line added to the setup

Progress (6/8): Plasma-Assisted Bi-Reforming

(a) Before (a) After

Replace 50% CO₂ with steam, other conditions unchanged:

- Similar ~1% CH₄ composition in outlet gas
- H₂:CO=2.3 vs. 0.4 in PADMR \rightarrow direct adoption
- Slightly reduced syngas production (90 vol.% of DMR)
- Much lower CO₂ cycling cost

Excellent decoking with steam gasification:

- Net coke reduction with Steam:Carbon (S:C)=0.81.
- Industry leader: S:C=0.90.

Progress (7/8): Industrial Flow Analysis and TEA

- Industrial process flow modeling on PADMR using ASPEN
- PADMR as an add-on system to SMR hydrogen production plant with 18.5 kmol/h CO₂ emission
- Bi-reforming can largely reduce recirculated CO₂

Progress (8/8): Industrial Flow Analysis and TEA

		- Estimated Capital	8.941
Major Parameters	Assumptions	Cost (Million \$)	
SMR Hydrogen	4344 kg/day	$\frac{\text{Obst}(\text{Winnell}\phi)}{\text{Obstration Cost}}$	2 1 2 2
Production			3.133
Corresponding CO2	18.5 kmol/hr	(Million \$)	
		Product Sales	4.215
Emission in Separation		(Million \$)	
Electricity Price	\$0.08 kWh	\square (Ninicit φ)	0.262
Natural Gas Price	\$3/GJ		0.203
CO in syngas Price	\$300/tonne	(IVIIIIon \$)	
H, in syngas Price	\$1000/toppe	Total Profit	1.299
	\$1000/t01116	- (Million \$)	
CO ₂ Tax Credit	\$35/tonne		
		Return on Capital	14.5%

- Conservative estimation of electricity and CO2 tax credit
- 1 eV/molecule syngas production energy cost
- 14.5% Return on Capital (RoC) for PADMR, compared with ~10% for SMR

Future Plan (1/1)

- Synthesize and test high-performance catalysts
- Continue the reactor optimization
- Test with simulated impurities
- System scaling up
- Detailed techno-economic analysis for bi-reforming process

- High efficiency PADMR at lower temperature (550 °C) with advanced catalyst
- 90% CH₄ conversion to eliminate separation
- Plasma-assisted bi-reforming provides syngas with suitable composition and excellent coke reduction
- Industrial process design showing economical viability

Acknowledgement

US Department of Energy SBIR Program DE-SC0019664 Program Manager: Dr. Lei Hong

Prof. Jonas Baltrusaitis Dept. of Chemical Engineering, Lehigh University

THANK YOU!