ELECTROCHEMICAL REDUCTION OF FLUE GAS CO₂ TO COMMERCIALLY VIABLE C2 – C4 PRODUCTS PROJECT: DE-FE0031916

Joshua M. Spurgeon University of Louisville, Louisville, KY

Program Manager: Andy Aurelio

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Funding

- DOE: \$1,000,000
- Cost Share: \$252,536 (UofL \$188,536, UND \$64,000)

Overall Project Performance Dates

- One budget period
- Start: October 1, 2020
- End: September 30, 2022, No-cost extension to March 31, 2023

Project Participants

- Recipient University of Louisville
 - PI Joshua Spurgeon Theme Leader for Solar Fuels, Conn Center for Renewable Energy Research
 - Co-PI Craig Grapperhaus, Professor, Chemistry Department
- Subrecipient University of North Dakota
 - Co-PI Nolan Theaker, Research Engineer, Institute for Energy Studies
- Partner Minnkota Power Cooperative

Technology Overview:

- Use of power plant flue gas derivatives for CO₂ reduction
- Electrolysis flow cell reactor for stable high current, high faradaic efficiency
- Nonaqueous catholyte to enable high selectivity production of novel products not found in aqueous CO₂ reduction
- Dual electrolyte approach with aqueous anolyte to have sustainable water oxidation

- Selectivity limited by catalyst, competition with hydrogen evolution, CO₂ mass transfer
- CO₂ reduction partial current limited by CO₂ solubility/mass flux, applied bias and overpotential, catalyst area

TECHNOLOGY BACKGROUND

Methanol electrolyte enables

- Higher CO₂ solubility (0.17 M compared to 0.033 M in water)
- Chemical addition of CO₂ with solvent as an intermediate for non-standard CO₂ reduction products

 $CO_2 + 2e^- + 2H^+ + CH_3OH \longrightarrow HCOOCH_3 + H_2O \longrightarrow H_2O \longrightarrow 1/2 O_2 + 2 e^- + 2 H^+$

Methyl formate

- Initial target C2 product
- Not an aqueous electrochemical CO2RR product
- Must come from waste CO₂, rigorously exclude anodic methanol oxidation
- Combined CO2RR to HCOOH and in-situ esterification reaction with methanol
- Similar C3 C4 product routes in ethanol and propanol to be pursued later

Te	chnical Advantages	Economic Advantages
•	Flow cell for high current, high selectivity operation	• Electroreduction – room temperature, atmospheric pressure, use for intermittent or curtailed electricity
•	Nonaqueous catholyte for high solubility and	
	intermediate reactant addition	 Waste CO₂ turned into value added product - 45Q tax credit - \$35/ton CO₂ utilized
•	Aqueous anolyte for sustainable water oxidation	
	rather than methanol oxidation which does not incorporate CO ₂	 Byproduct H₂ is still valuable
		 Direct utilization of flue gas – no CAPEX for CO₂ capture plant
		 Methanol ~ \$400/ton, methyl formate ~ \$1600-
		1800/ton
Те	chnical Challenges	1800/ton
Te •	chnical Challenges Flue Gas - Mitigate contaminants degrading stability	1800/ton Economic Challenges
Те •	chnical Challenges Flue Gas - Mitigate contaminants degrading stability (SO _x , NO _x), dilute O ₂ decreasing faradaic efficiency (FE), lower CO ₂ concentration	1800/ton Economic Challenges Achieving high current density and FE for acceptable capital costs
Те •	Flue Gas - Mitigate contaminants degrading stability (SO _x , NO _x), dilute O ₂ decreasing faradaic efficiency (FE), lower CO ₂ concentration Chemistry – Maintain low pH for high FE to methyl formate, low methanol crossover	1800/ton Economic Challenges • Achieving high current density and FE for acceptable capital costs • Minimizing methanol anodic oxidation as an operating expense
Te •	 Chnical Challenges Flue Gas - Mitigate contaminants degrading stability (SO_x, NO_x), dilute O₂ decreasing faradaic efficiency (FE), lower CO₂ concentration Chemistry – Maintain low pH for high FE to methyl formate, low methanol crossover Engineering – Achieve high CO₂ flux to cathode in methanol solvent 	1800/ton Economic Challenges • Achieving high current density and FE for acceptable capital costs • Minimizing methanol anodic oxidation as an operating expense • Market size for chemicals vs. industrial CO ₂ output – need for diversified products with favorable TEA

PROJECT OVERVIEW

Overall Project Objectives

- <u>Objective 1</u> Establish mechanistic pathway and characterize vs potential and pH
- <u>Objective 2</u> Build an electrolysis flow cell reactor for high current density performance

- <u>Objective 3</u> Demonstrate direct conversion of flue gas at high faradaic efficiency and current density
- <u>Objective 4</u> Integrate flue gas feed with the optimized flow cell reactor to achieve performance and stability targets for commercial viability
- <u>Objective 5</u> Perform technoeconomic analysis (TEA) and life cycle analysis (LCA)

Work Plan

- Task 1 (Q1) Project Management and Planning
- Task 2 (Q1-7) Improvement of Faradaic Efficiency to C2-4 Products
- Task 3 (Q1-7) Develop Electrolysis Reactor for High-current CO₂ Reduction
- Task 4 (Q3-7) CO₂ Electrolysis System from Power Plant Flue Gas Derivatives
- Task 5 (Q5-8) Full System Integration with Commercially Relevant Performance
- Task 6 (Q7-8) Technoeconomic Analysis and Life Cycle Analysis

Quarter	1	2	3	4	5	6	7	8
Key Milestone	Fabricate Flow Cell Electrolyzer	Complete pH and Applied Potential Study	Demonstrate C2+ FE > 40%	Complete Flue Gas Contaminants Study	Methanol Crossover < 5% FE CH₃OH Oxidation	Current Density > 600 mA cm ⁻²	Flue Gas Performance > 100 h with > 40% FE C2+	Operation on Utility Site Flue Gas > 1 Week

- Again, the initial focus was on methyl formate as the desired product
- Directed electrochemistry studies in an H-cell to inform the flow reactor testing

Direct H-cell studies with a Pb wire cathode

 $\mathrm{CO}_2 + 2\mathrm{e}^{\scriptscriptstyle-} + 2\mathrm{H}^+ + \mathrm{CH}_3\mathrm{OH} \longrightarrow \mathrm{HCOOCH}_3 + \mathrm{H}_2\mathrm{O} \quad \mathrm{H}_2\mathrm{O} \longrightarrow 1/2 \ \mathrm{O}_2 + 2 \ \mathrm{e}^{\scriptscriptstyle-} + 2 \ \mathrm{H}^+$

Determination of System Parameter Effects – Effect of pH •

> V Milestone 2.e – Complete Acid Concentration/pH Study

Faradaic efficiency vs. catholyte pH for Pb methanol catholyte with in water anolyte.

STITUTE FOR

• Determination of System Parameter Effects – Effect of Applied Potential

Milestone 2.c – Complete Applied Potential Study

Sat. KCl, pH 1.5 CH_3OH catholyte and 3 mM HCl in water anolyte separated by Nafion.

Formate Formic Acid Methyl Formate Hydrogen --Cathode --Anode

Partial current densities and FE vs. applied potential measured after potentiostatic operation for 30 min.

Publication:

Hofsommer, D.T., Liang, Y., Uttarwar, S.S., Pishgar, S., Gupta, M., Gulati, S., Grapperhaus, C.A., and Spurgeon, J.M., "The pH and Potential Dependence of Pb-catalyzed Electrochemical CO₂ Reduction to Methyl Formate in a Dual Methanol/Water Electrolyte", *ChemSusChem*, **2022**, 15 (5), e202102289. doi.org/10.1002/cssc.202102289

H₂ evolution strongly

Up to 75% FE methyl

formate at -2.0 V vs.

suppressed on Pb

relative to Pt

Ag/AgCl

Optimization of Catalyst and Electrolysis Conditions

- The inclusion of 4% O₂ in the gas feed was found to enable durable faradaic efficiency for methyl formate by inhibiting increasing H₂ evolution.
- Methyl formate FE greater than 40% has been maintained > 72 hours.

Alternate Solvent Study

CO₂ reduction in ethanol to produce C3 species ethyl formate

- Early testing, H-cell studies only
- CO2RR + esterification with ethanol works for three-carbon product
- Ethyl formate at up to 75% faradaic efficiency achieved

Task 3 – Develop Electrolysis Reactor for High-current CO₂ Reduction

Electrolyzer Chassis Design

Milestone 3.a – Fabricate Flow Cell Electrolyzer for High Current

Flow cell exploded view.

- Acid-stable components for low pH operation
- Porous carbon Toray paper gas diffusion electrodes (GDE) for high catalyst loading and high mass flux of reactants
- Three-compartment arrangement with methanol through central compartment and gaseous CO₂ through cathode flowfield
- Peristaltic and/or syringe pumps for electrolyte flow

Flow cell system setup.

PROGRESS AND CURRENT STATUS OF PROJECT

Task 3 – Develop Electrolysis Reactor for High-current CO₂ Reduction

• CO₂ Feed to the Cathode – Baseline Flow Cell Performance

- The pH was maintained < 2.5 to promote methyl formate
- A current density plateau occurs with acidic anolyte due to increasing H₂ evolution as H⁺ crosses the membrane
- Flow cell methyl formate selectivity has been low so far, with FE < ~20%
- Flooding of the GDE cathode is a problem due to poor wet-proofing of methanol

Task 3 – Develop Electrolysis Reactor for High-current CO₂ Reduction

• CO₂ Feed to the Cathode – Alternate Wet-proofing Layer

Methanol drop on PTFE-coated GDE

Methanol drops on PFOTS-coated GDE

1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS)

- Using an alcohol-repellent coating to try to make effective gas diffusion electrodes for operation in methanol
- The modified GDE holds back methanol.
- Functional alcohol-repellent cathodes are under development and testing.

Air

After 1 hour

Task 4 – CO₂ Electrolysis System from Power Plant Flue Gas Derivatives Impurity and CO₂ Concentration Effects – Flue Gas Contaminants Study

- Methyl formate selectivity/faradaic efficiency was stable at 40 45%
- Performance was tolerant to individual contaminants (SO₂, NO, O₂) at flue gas concentrations

Task 4 – CO₂ Electrolysis System from Power Plant Flue Gas Derivatives Impurity and CO₂ Concentration Effects – Flue Gas Contaminants Study

Milestone 4.a – Complete Flue Gas Contaminants Study

- Slight MF FE drop with SO₂ and NO due to preferential reduction of the contaminant
- Parasitic oxygen reduction FE with 4% O₂ was low low O₂ solubility in methanol
- Surface with O₂ was different (Pb₃O₄) maintaining an in-situ surface oxide suggested to kinetically inhibit HER and promote CO2RR

Task 4 – CO₂ Electrolysis System from Power Plant Flue Gas Derivatives Impurity and CO₂ Concentration Effects – CO₂ Concentration Study

- The partial current density for methyl formate decreases with the concentration of CO₂ due to declining reactant mass flux
- At greater than 50% CO₂, there is only a modest decrease in the MF FE compared to pure CO₂

Task 4 – CO₂ Electrolysis System from Power Plant Flue Gas Derivatives

• Impurity and CO₂ Concentration Effects – Simulated Flue Gas

Publication:

Gautam, M., Hofsommer, D.T., Uttarwar, S.S., Theaker, N., Paxton, W.F., Grapperhaus, C.A., and Spurgeon, J.M., "The Effect of Flue Gas Contaminants on Electrochemical Reduction of CO₂ to Methyl Formate in a Dual Methanol/Water Electrolysis System", *Chem Catalysis*, Accepted, **2022**.

- Performance is tolerant to simulated flue gas with CO₂ down to 80% v/v concentration.
- The presence of O₂ led to better performance than comparable dilute CO₂ without contaminants.
- Actual flue gas level 15% CO₂ led to significant performance degradation.

- TEA of Flue Gas Conversion to C2 Product
- Systems to be modeled for comparison:
 - 1) CO2RR in dual CH₃OH/H₂O electrolyzer from captured pure CO₂
 - 2) CO2RR in dual CH₃OH/H₂O electrolyzer from flue gas CO₂
 - 3) CO2RR in CH₃OH only electrolyzer from captured pure CO₂
 - 4) CO2RR in H₂O electrolyzer to HCOOH, then downstream converted to methyl formate

- Basis: 1x10⁵ kg MF/day starting point for mass balance
- Same operating voltage and current density assumed for all systems
- Aspen software used to model distillation columns for separation of liquids

TEA of Flue Gas Conversion to C2 Product

Product	Mark et price (\$ kg ⁻¹)	Molecular weight (g mol ⁻¹)	Electrons per molecule	Price per electron (\$ mol ⁻¹ electron) x 10 ³
Carbon monoxide	0.60	28.01	2	8.4
Formic acid	0.70	46.03	2	16.1
Methanol	0.40	32.04	6	2.1
Methane	0.18	16.04	8	0.4
Ethylene	1.30	28.05	12	3.0
Ethanol	1.00	46.07	12	3.8
Propanol	1.43	60.10	18	4.8
Methyl formate	1.60	60.05	2	48.0

 $CO_2 + 2H^+ + 2e^- + CH_3OH \rightarrow HCOOCH_3 + H_2O$

Economics of CO₂ reduction to methyl formate look encouraging because:

- High market price per kg
- High molecular weight
- Only 2 electrons per molecule of MF (or 8 if CH₃OH must be synthesized from CO₂ as well)
- Low cost of methanol reactant

Sensitivity Analysis

• Cost contour plots

Publication:

Spurgeon, J.M., Theaker, N., Phipps, C.A., Uttarwar, S.S., and Grapperhaus, C.A., "A Comparative Technoeconomic Analysis of Pathways for the Electrochemical Reduction of CO_2 with Methanol to Produce Methyl Formate", Submitted, **2022.**

Current Status

- Task 2 has established stable high selectivity MF synthesis, and is now extending this to the C3 ethyl formate in ethanol solvent
- Task 3 flow cell electrolyzer design and testing has made progress but a cathode design for high CO₂ flux in methanol needs to be optimized
- Task 4 flue gas electrolysis showed tolerance to contaminants but sensitivity to decreased CO₂ concentration, and the results need to be extended to the flow cell and real flue gas
- Task 5 integration of the advances needs an effective flow cell gas diffusion electrode to proceed
- Task 6 technoeconomic analysis is complete, and life-cycle analysis work has begun

Quartar	1	2	2	4	5	6		2
Key Milestone	Fabricate Flow Cell Electrolyzer	Complete pH and Applied Potential Study	Demonstrate C2+ FE > 40%	Complete Flue Gas Contaminants Study	Methanol Crossover < 5% FE CH₃OH Oxidation	Current Density> 600 mA cm ⁻²	Flue Gas Performance > 100 h with > 40% FE C2+	Operation on Utility Site Flue Gas > 1 Week

Plans for Future Testing/Development/Commercialization

Plans for the future

- On-site flue gas testing of flow cell electrolyzer at a power plant
- Continue development of high performance nonaqueous catholyte CO₂ electrolyzers for additional novel products

Three-carbon products

- Ethyl formate, C₃H₆O₂-like methyl formate route, CO₂ reduction to formic acid and esterification in ethanol
- Methyl acetate, C₃H₆O₂ CO₂ reduction to acetate and esterification in methanol

Four-carbon products

 Propyl formate, C₄H₈O₂ – CO₂ reduction to formic acid and esterification in propanol

Commercialization plan

- Provisional/non-provisional patent applications of generated IP
- Pursue SBIR funding for device scale-up
- Look for collaborative opportunities with large electrolyzer manufacturers
- Customer discovery through utilities, cement producers, chemical manufacturers, oil companies
- Potentially license technology to CO₂ electrolysis companies like Dioxide Materials or Opus 12

O

SUMMARY SLIDE

Waste CO₂ can be electrochemically upgraded in nonaqueous solvent to species not produced in aqueous systems, like methyl formate. Conversion can be accomplished with high selectivity and current and high tolerance to flue gas impurities, but effective gas diffusion electrodes in alcohols are need for a high performance flow cell.

- Up to 75% FE HCOOCH₃ achieved
- System needs catholyte 1 < pH < 2.5 for methyl formate
- Methyl formate FE > 40% steady for > 72 h with 4% O₂ added
- Steady performance tolerant to flue gas contaminants
- Technoeconomics looks favorable for the methyl formate electrosynthesis if high current density is achieved

vstem 1

System 2

System 3

нсоосн

System 4

HCOOH + CH₃OH

- State Point Data Table
- Organization Chart
- Gantt Chart

THANK YOU FOR LISTENING

<u>Co-Pls:</u>

CRAIG GRAPPERHAHUS

NOLAN THEAKER

<u>Researchers:</u> Dillon Hofsommer Manu Gautam Sandesh Uttarwar Francois Nkurunziza Hank Paxton

UNIVERSITY OF

Arjun Thapa

Tyler Boyer Tyler Thompson Isabella Zamborini

CONN CENTER

Synthesis of Value-Added Organic Products

Technology Performance Data

	Units	Measured/Current Performance	Projected/Target Performance			
Synthesis Pathway Steps ¹						
Step 1 (based on CO ₂) - Cathode	mol ⁻¹	CO ₂ +2H ⁺ +2e	$+\mathbf{CH}_{3}\mathbf{OH} \rightarrow \mathrm{HCOOCH}_{3} + \mathrm{H}_{2}\mathrm{O}$			
Step 2 - Anode	mol ⁻¹	$2H_2O \rightarrow O_2 + 4I$	H⁺ + 4e⁻			
Step – Full Reaction	mol ⁻¹	CO ₂ + CH ₃ OH -	\rightarrow HCOOCH ₃ +1/2O ₂			
Source of external intermediate 1		Methanol (CH ₃ OH)−fro	omnaturalgas			
Reaction Thermodynamics ^{2,3}						
Reaction ⁴		Electro	chemical			
ΔH^{o}_{Rxn}	KJ/mol	+2	66.0			
ΔG°_{Rxn}	KJ/mol	+322.4				
Conditions		(range)	(range)			
CO₂ Source ⁵		Pure CO ₂ , simulated flue gas	Coal-fired flue gas			
Catalyst ⁶		Pbfoil	Pbnanoparticles			
Pressure	bar	1.013	1.013			
CO ₂ Partial Pressure	bar	1.013 to 0.15	0.15			
Temperature	٥C	25	25			
Performance		(range)	(minimum)			
Nominal Residence Time ⁷	sec	15-30	15			
Selectivity to Desired Product ⁸	%	85-90	95			
Product Composition ⁹		(range)	(optimal)			
Desired Product – Methyl Formate	mol%	40 - 60	60			
Desirable Co-Products - Hydrogen	mol%	30 - 60	37			
Unwanted By-Products – Formic Acid	mol%	3 - 10	3			
Grand Total	mol%	100	100%			

Task Name		Yea	ar 1		Year 2				
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Task 1.0 - Project Management and Planning	ο								
Task 2.0 – Improvement of Faradaic Efficiency to C2-4 Products		ο		ο		ο			
Task 3.0 – Develop Electrolysis Reactor for High- current CO ₂ Reduction	0		х		Ο	х			
Task 4.0 - CO ₂ Electrolysis System from Power Plant Flue Gas Derivatives				ο	ο		х		
Task 5.0 – Full System Integration with Commercially Relevant Performance								х	
Task 6.0 – Technoeconomic Analysis and Life CycleAnalysis							0	Х	

Task Duration

Completed Work

O – Complete Milestone

X – Incomplete Milestone

1

• Gantt Chart/schedule of activities

Tesh News	Team	Resources		Yea	ar 1			Ye	ar 2	
Task Name		Allocated	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1.0 - Project Management and Plannig	UofL, UND	\$12,956					-			
Subtask 1.1 - Project Management Plan	UofL, UND	\$5,182								
Subtask 1.2 - Technology Maturation Plan	UofL, UND	\$7,773								
Milestone 1.a - Intellectual Property Agreement	UofL, UND		X							
Task 2.0 – Improvement of Faradaic Efficiency to C2-4 Products	UofL-Grapperhaus	\$196,547					_			1
Subtask 2.1 – Establish Mechanistic Pathway	UofL-Grapperhaus	\$58,964		N7						
Milestone 2.a - Complete Isotope Labeling Study	UofL-Grappernaus			λ	v					
Subtack 2.2 Determination of Sustam Deromotor Efforts	UofL-Grappernaus	\$59.064			Λ					
Milestone 2 c - Complete Applied Potential Study	UofL-Grapperhaus	\$38,904		x						
Milestone 2.d – Complete Catalyst Concentration Study	UofL-Grapperhaus				v					
Milestone 2.e – Complete Acid Concentration/pH Study	UofL-Grapperhaus					x				
Subtask 2.3 – Optimization of Catalyst and Electrolysis Conditions	UofL-Grapperhaus	\$78.619								1
Milestone 2.f - Demonstrate High C2-4 Product Faradaic Efficiency	UofL-Grapperhaus	1,.						X		
Task 3.0 – Develop Electrolysis Reactor for High-current CO2 Reduction	UofL - Spurgeon	\$265,041								1
Subtask 3.1 – Electrolyzer Chassis Design	UofL - Spurgeon	\$92,764								
Milestone 3.a - Fabricate Flow Cell Electrolyzer for High Current	UofL - Spurgeon		Х							
Subtask 3.2 – CO2 Feed to the Cathode	UofL - Spurgeon	\$53,008								
Milestone 3.b – Complete Direct Gaseous CO2 Study	UofL - Spurgeon				Х					
Milestone 3.c – Complete Liquid-Fed CO2 Study	UofL - Spurgeon					x				
Subtask 3.3 – Methanol Crossover and Oxidation	Uofl - Spurgeon	\$53.008								
Milestone 2 d. Demonstrate Terret Methanel Crossever Pate	Uoff Spurgeon	\$55,000				[v			
	Uoil - Spuigeon	\$55.250					А			
Subtask 3.4 – High-current CO2 Electrolysis Characterization	UofL - Spurgeon	\$66,260								ļ
Milestone 3.e – Demonstrate CO2 Reduction Target Current Density	UofL - Spurgeon							X		
Milestone 3.f – Demonstrate Stability of Electrolysis	UofL - Spurgeon							X		
Task 4.0 - CO2 Electrolysis System from Power Plant Flue Gas Derivatives	UND - Theaker	\$196,134								
Subtask 4.1 - Impurity and CO2 Concentration Effects	UND - Theaker	\$49,034								
Milestone 4.a - Complete Flue Gas Contaminants Study	UND - Theaker					X				
Milestone 4.b - Complete CO2 Concentration Study	UND - Theaker					X				
Milestone 4.c – Complete Catalyst/Electrolyte Flow Rate Study	UND - Theaker						X			
Subtask 4.2 – Mitigation Strategies for Contaminants	UND - Theaker	\$58,840				1	1			
Milestone 4 d - Determine Impurity/CO2 Concentration Thresholds	UND - Theaker						x			
Subtack 4.2 Coal Darived Flue Coa Flactachiaia	UND Theater	\$99.260					А			
Subtask 4.5 – Coar-Derived File Cas Electrolysis	UND - Theaker	\$00,200					1	v		
Milestone 4.e – Extended Test with Coal Derived Gas	UND - Theaker	A 40.2 0.20						Λ		
Task 5.0 – Full System Integration with Commercially Relevant Performance	UofL, UND	\$493,820								
Subtask 5.1 – Integrate Improved Components to Reactor	UofL, UND	\$296,292								
Milestone 5.a – Integrated System at Target Electrolysis Metrics	UofL, UND									X
Subtask 5.2 – Downstream Product Separation	UND - Theaker	\$74,073								
Milestone 5.b - Downstream C2-4 Separation at Target Purity	UND - Theaker									Х
Subtask 5.3 - Practical Demonstration of Technology Readiness	UofL, UND	\$123,455								ł
Milestone 5.c - System Demonstration at Commercial Utility	UofL, UND									X
Task 6.0 – Technoeconomic Analysis and Life Cycle Analysis	UofL, UND	\$88,038								
Subtask 6.1 – TEA of Flue Gas Conversion to C2-4 Product	UofL, UND	\$44.019								
Milestone 6 a – Complete TEA for Demonstrated Performance	UofL UND	. ,								x
Subteck 62 – ICA of Flue Conversion to C2 4 Product	Loft UND	\$44.010								
Subtask 0.2 – LCA of Flue das Conversion to C2-4 Floduct	U-A UND	φ 11 ,019								v
Milestone 6.6 – Complete LCA for Overall Process	UOIL, UND									Λ

• Gantt Chart/schedule of activities

	Resour			Ye	ear 1			ar 2		
Task Name	Team	Allocated	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1.0 - Project Management and Plannig	UofL, UND	\$12,956								
Subtask 1.1 - Project Management Plan	UofL, UND	\$5,182								
Subtask 1.2 - Technology Maturation Plan	UofL, UND	\$7,773								
Milestone 1.a - Intellectual Property Agreement	UofL, UND		X		complete					
Task 2.0 – Improvement of Faradaic Efficiency to C2-4 Products	UofL-Grapperhaus	\$196,547								l
Subtask 2.1 – Establish Mechanistic Pathway	UofL-Grapperhaus	\$58,964		×7						
Milestone 2.a - Complete Isotope Labeling Study	UofL-Grappernaus			А	v					
Subtack 2.2 – Determination of System Parameter Effects	UofL-Grapperhaus	\$58.964			Δ					
Milestone 2 c – Complete Applied Potential Study	UofL-Grapperhaus	\$50,704		x	complete		1	-		
Milestone 2.d – Complete Catalyst Concentration Study	UofL-Grapperhaus				X					
Milestone 2.e - Complete Acid Concentration/pH Study	UofL-Grapperhaus				complete	х				
Subtask 2.3 - Optimization of Catalyst and Electrolysis Conditions	UofL-Grapperhaus	\$78,619								
Milestone 2.f - Demonstrate High C2-4 Product Faradaic Efficiency	UofL-Grapperhaus							X, complet	te	
Task 3.0 – Develop Electrolysis Reactor for High-current CO2 Reduction	UofL - Spurgeon	\$265,041								
Subtask 3.1 – Electrolyzer Chassis Design	UofL - Spurgeon	\$92,764		1						
Milestone 3.a – Fabricate Flow Cell Electrolyzer for High Current	UofL - Spurgeon		X, complet	e						
Subtask 3.2 – CO2 Feed to the Cathode	UofL - Spurgeon	\$53,008								
Milestone 3.b – Complete Direct Gaseous CO2 Study	UofL - Spurgeon				X					
Milestone 3.c - Complete Liquid-Fed CO2 Study	UofL - Spurgeon				2	X, complet	te			
Subtask 3.3 – Methanol Crossover and Oxidation	UofL - Spurgeon	\$53,008								
Milestone 3.d – Demonstrate Target Methanol Crossover Rate	UofL - Spurgeon						X			
Subtask 3.4 - High-current CO2 Electrolysis Characterization	UofL - Spurgeon	\$66,260								
Milestone 3.e – Demonstrate CO2 Reduction Target Current Density	UofL - Spurgeon							X		
Milestone 3.f – Demonstrate Stability of Electrolysis	UofL - Spurgeon							X		
Task 4.0 - CO2 Electrolysis System from Power Plant Flue Gas Derivatives	UND - Theaker	\$196,134								
Subtask 4.1 – Impurity and CO2 Concentration Effects	UND - Theaker	\$49,034								
Milestone 4.a - Complete Flue Gas Contaminants Study	UND - Theaker					X		complete		
Milestone 4.b – Complete CO2 Concentration Study	UND - Theaker					x		complete		
Milestone 4.c – Complete Catalyst/Electrolyte Flow Rate Study	UND - Theaker						x			
Subtask 42 – Mitigation Strategies for Contaminants	UND - Theaker	\$58 840								
Milestone 4 d – Determine Impurity/CO2 Concentration Thresholds	UND - Theaker	450,010					x			
Subtask 4.3 Coal Derived File Cos Electrolysis	UND Theaker	\$88.260					A			
Milestone 4.2. Extended Test with Coal Derived Coa	UND Theater	\$66,200					1	v	<u> </u>	
Table 5.0. Fall Santan Leta and an aide Communication Derived Cas	UND - Theaker	\$ 402 820						Δ		-
Task 5.0 – Full System integration with Commercially Relevant Performance	UOIL, UND	\$493,820								
Subtask 5.1 – Integrate Improved Components to Reactor	Uoil, UND	\$296,292						-	 ,	V
Milestone 5.a – Integrated System at Target Electrolysis Metrics	UotL, UND									X
Subtask 5.2 – Downstream Product Separation	UND - Theaker	\$74,073								
Milestone 5.b – Downstream C2-4 Separation at Target Purity	UND - Theaker									X
Subtask 5.3 – Practical Demonstration of Technology Readiness	UofL, UND	\$123,455								
Milestone 5.c - System Demonstration at Commercial Utility	UofL, UND									X
Task 6.0 – Technoeconomic Analysis and Life Cycle Analysis	UofL, UND	\$88,038								
Subtask 6.1 – TEA of Flue Gas Conversion to C2-4 Product	UofL, UND	\$44,019								
Milestone 6.a - Complete TEA for Demonstrated Performance	UofL, UND								complete	Х
Subtask 6.2 - LCA of Flue Gas Conversion to C2-4 Product	UofL, UND	\$44,019								
Milestone 6.b - Complete LCA for Overall Process	UofL, UND									х

Project Success Criteria

- Complete TEA and LCA for realistic system parameters with sensitivity analysis
- Completion of a reactor operating from flue gas at performance metrics for profitability as determined by the TEA (Target Metrics: 600 mA cm⁻² at > 40% FE C2-4s for > 100 h)

	R	isk Rating		
Perceived Risk	Probability (Low	Impact v, Med, High)	Overall	Mitigation/Response Strategy
Cost/Schedule Risks:				
Parameter effect studies take too long to keep up with reactor development	Med	Med	Med	Constant communication between catalyst and reactor teams/redirection of priorities
Technical/Scope Risks:				
Flue gas feed performance and stability issues	Med	Med	Med	Multiple catalyst options (Pb, Sn, Bi), decontamination, CO ₂ absorber, CO ₂ concentration studies
Insufficiently high current density	Med	Med	Med	Flow cell condition optimization, maximize aqueous systems first
Difficulty achieving or maintaining high FE of C2 - C4 product	Med	Med	High	Product distribution mapping, CO ₂ mass transfer optimization, pH stabilization
ES&H Risks:				
Covid-19 inhibiting research	High	Low	Low	Safety protocols, remote meetings, limited lab capacity

