A Pressure-Swing Process for Reactive CO₂ Capture and Conversion to Methanol through Precise Control of Co-Located Active Sites in Dual Functional Materials (FWP-FY21-RCC-LAB-CALL)

Daniel Ruddy National Renewable Energy Laboratory (NREL)

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Participants and Roles

Overall Project Performance Dates: Oct 1, 2021 – Sept 30, 2024

- \$2,670k over 3 years
- Lead DFM Characterization
 - Wilson McNeary
- Lead performance testing for CO₂ to MeOH
 - Anh To
- Lead process modeling, techno-economic and life cycle analyses (TEA, LCA)
 - Jennifer King
- Project Management
 - Dan Ruddy

- \$283k over 3 years
- Lead synthesis of dualfunction materials (DFMs)
 - Prof. Al Weimer
- Atomic layer and molecular layer deposition (ALD, MLD)
- Assist DFM characterization

- \$35k in year 3
- Assist technology
 maturation for DFM
 scalability via ALD/MLD
 - Arrelaine Dameron
 - Staci Moulton

Project Objective

- This project will design and develop tailored dual-function materials (DFMs) and the accompanying pressure-swing process for reactive capture and conversion (RCC) of CO₂ to directly produce methanol
- This will favor lower capital and operating expenses and offer compatibility with a dynamic energy grid to provide favorable process economics

Task Structure and Key Personnel

A Pressure-Swing Process for CO₂ RCC to Methanol through Precise Control of Co-Located Active Sites in DFMs

Task 1: DFM Synthesis and Characterization

Task Leaders: Wilson McNeary (NREL) and Alan Weimer (CU) *Key Personnel*: Susan Habas (NREL), Hailey Loehde-Woolard (CU)

Task 2: RCC Evaluation

Task Leader: Anh To (NREL)

Key Personnel: Martha Arellano-Trevino (NREL), Wilson McNeary (NREL) Task 3: Process Modeling and Scale-up

Task Leader. Jennifer King (NREL)

Key Personnel: Jonathan Martin (NREL), Eric Tan (NREL), Staci Moulton (FN)

Task 4: Project Management and PlanningTask Leader: Dan Ruddy (NREL)Key Personnel: Alan Weimer (CU), Arrelaine Dameron (FN)

How the chemistry works

2-step capture-convert chemistry

- Amine binding of CO₂ followed by introduction of H₂ with increased pressure
- Constant temperature, targeting operation near 100 °C
- Metal species chosen to favor methanol production (e.g., Pd, Cu)

Key Challenges

- Capture capacity and efficiency
- Selectivity to methanol
- Stability

How the process works

• Multi-bed pressure-swing capture-conversion system

Key Challenges

- Capture AND conversion rates cycle time dictates production rate
- Separations and purity of methanol product

Unique Aspects of this Project

Materials Chemistry

• Precise *control* of base and metal sites

Catalysis

- Pressure-swing reactor for *low temperature* conversion (< 100 °C)
- Avoids high-T costs compared to methanation
 - capex, opex, low product value

Process Design and LCA

- Static and dynamic energy grid situations
 - DFM stability during periods of inactivity,
 - Modular process design to match energy demand and availability
 - CO₂ conversion step using renewable H₂

Advantages, by the Numbers

- Methanol vs Methane
- 5-10X difference in value
- Versatile precursor in fuel/chemical markets
- Why an RCC approach at gas-fired power plants?
- CO₂ capture costs of \$43-89/ton
- Carbon capture rate (0.47 MMT_{CO2}/year/plant) matches well with RCC scale
 - Does not require a "giant" first RCC installation
 - 5-7 cylindrical reactors of 5m dia. x 10m height; 375-560 t_{DFM}/site
- High number of plants (>1100)
- Can equal current annual production of renewable MeOH (0.2 MMT/year) with the 1st installation

Experimental Design

DFM Synthesis and Characterization

- MLD and ALD are scalable technologies that provide needed control over base and metal sites
- Structural and active site characterization
- CO₂ chemisorption and thermogravimetric analysis – capacity, rate, strength
- H₂ chemisorption capacity and rate

RCC Evaluation

- 0.5 2.0 g-scale single-bed system for the 2-step capture-convert process
- Tailored gas compositions (%CO₂, H₂) and ability to study the effects of impurities in later-stage R&D

NREL's HOPP tool (hybrid optimization and performance platform) for renew. H₂

- Establish model for wind+solar PV, battery storage, H₂ production and storage, RCC co-located with the gas-fired power plant
- Optimize this hybrid system down to the component level for each technology to maximize operational efficiency and cost-effectiveness of the overall system

Project Schedule and Key Milestones

Milestones at 6-month intervals (8 total over 36 months)

- 03/22: Synthesize and characterize at least 12 first-generation DFMs
- 09/22: Evaluate RCC performance of DFMs at bench scale, targeting 80% MeOH selectivity
- 03/23: Achieve stable RCC performance over 20 cycles
- 03/23: Build initial process model with TEA, LCA
- 09/23: Evaluate **top 3 DFMs with simulated flue gas** containing oxygen, water, impurities
- 03/24: Identify critical hurdles to DFM and process scale-up
- 03/24: Evaluate best performing DFM(s) for 100 RCC cycles
- 09/24: Final report with process model, TEA, LCA

Success Criteria: Go/No-Go Decision Points

- 03/23: Using TEA and LCA, **determine performance metrics needed to achieve favorable carbon intensity and economics** versus baseline methanol production with and without CCS. Achievable performance results in a 'go'.
- 03/24: Demonstrate stability over 100 cycles. 90% of original activity results in a 'go'.

Risks and Mitigation

Risk	Mitigation
DFMs do not remain stable	Utilize multiple amine precursors for MLD with previously-
under repeated reaction	demonstrated stability under relevant temperatures. Test
cycles.	stability of top-performing DFMs under simulated flue gas
	containing oxygen, water vapor, and impurities.
Sufficient catalytic activity	Examine multiple synthetic approaches of DFMs and a range
and selectivity to	of candidate metal species (Cu, Pd, Ru) in BP1.
methanol is not obtained	Expand operation conditions (increase reaction temperature
under proposed range of	and/or pressure) of the reactive conversion of adsorbed CO_2 .
operating conditions.	
Mismatch in kinetics	Tuning basic/metallic ratio of the catalysts to adjust rate of
between CO ₂ capture and	CO ₂ capture and reactive desorption steps.
reactive desorption steps	
Proposed process does not	Engage TEA team early in BP1 to evaluate high-performing
meet carbon intensity and	DFMs in TEA/LCA and make adjustments in synthesis if
economic metrics in	necessary.
TEA/LCA.	

Task 1: DFM Synthesis and Characterization

Goal: Synthesize DFMs with a range of base/metal site ratios (B/M) targeting 1-25 mol/mol

Task 1: CO₂ Adsorption-Desorption TGA Cycling

- Thermal cycling used to assess stability
- TMPTA-5% PdH/SiO₂ DFM retained > 90% starting capacity
- Future DFMs will be investigated in isothermal adsorption/hydrogenation RCC cycles

Task 2: DFM Performance Testing

Schematic of RCC Reactor System

- Operating limits: 450 °C; 100 psi
- Variable reactor size: 1/4" –
 1" OD stainless steel tube
- Automatic & remote control with Opto22 & Groov
- Online product analysis: MSD, FTIR & O₂ analyzer
- Syringe pump for water injection
- Variable gas supply

Task 2: Commissioning of RCC Reactor

- Baseline CO₂ hydrogenation using benchmark CuZnO-Al₂O₃
- Not RCC, light off temp ca. 135 °C
- Goal is decreased light-off T with amine capture

Task 3: Techno-economic Analysis – Site Selection

- H₂ generated by new wind/solar hybrid plants built near existing NGCC plants
- Scouted sites near all existing 500 MW+ NGCC plants in the eastern US
 - Excluded the west H₂O scarcity
- Metric: Levelized Cost of Hydrogen (LCOH) [\$/kg]
 - Color of circle = LCOH
 - Location of circle = Existing NGGC plant
- **Tool**: NREL's "HOPP" (Hybrid Optimization and Performance Platform)
- Calculates wind/solar ratio to minimize cost

Identified 3 sites with promising co-location opportunity based on cost of renewable H₂ production from wind+solar

Task 3: Techno-economic Analysis – Levelized Cost of Methanol

- Levelized Cost of Methanol (LCOM) for pure CO_2/H_2 process: $0.57/kg^1$
- PROVISIONAL LCOM for our flue gas/H₂ process: \$0.53/kg
- \$0.43/kg H₂ production: hard calculation using existing HOPP model
- \$0.10/kg RCC retrofit for NGCC flue gas: provisional building ASPEN models

Framework to determine LCOM is ahead-of-schedule

Next Steps

Task 1: DFM Synthesis & Characterization

- -Determine CO2 adsorption modes with FTIR spectroscopy
- Tune synthesis parameters to maximize M-B co-location based on initial RCC data outcomes

Task 2: RCC Evaluation

- Develop CO₂ RCC procedure to identify temperature, pressure, cycle time
 - Baseline and benchmark against commercially available catalysts (CuZnO)
- -Study cycle performance of initial suite of DFMs
- *in-situ* FTIR spectroscopy to **identify intermediates** during CO₂
 adsorption on DFMs and identify **species that limit RCC performance**

Task 3: Process Modeling and Scale-up

- -ASPEN modeling of flue gas decontamination and RCC reactors
- Cradle-to-gate Life Cycle Analysis (LCA) using OpenLCA software
 - Carbon intensity (CI) for standard methanol: 1.13 kg CO₂e/kg MeOH
 - *Provisional* CI for our RCC process with assumptions: 1.26 kg CO₂e/kg MeOH
- -Scale-up: Engage ForgeNano in Years 2 and 3

Next Steps: Stakeholder Engagement

- Getting industry input and feedback on assumptions in our TEA/LCA to ensure highest impact and market readiness
- Seeking strategic partnerships and co-operative R&D opportunities with methanol producers looking to reduce carbon intensity and grow the bio-methanol market

Summary

- Tailored DFMs and the accompanying pressure-swing process for RCC of CO₂ to methanol with renewable H₂
- **Rigorous RCC evaluation** including stability testing and scale-up consideration
- Process modeling with **comparative** TEA and LCA

Team Members

Dan Ruddy Wilson McNeary Anh To Martha Arellano-Treviño Susan Habas Nicole LiBretto Eric Tan Jennifer King Jonathan Martin

Alan Weimer Hailey Loehde-Woolard

Arrelaine Dameron Staci Moulton

Appendix

- These slides will not be discussed during the presentation but are mandatory.
- Organization Chart
- Gantt Chart
- Additional materials provided
- ALD/MLD reactor at CU-Boulder
- Schematic of ALD/MLD process chemistry
- PID for commercial ALD from ForgeNano

Organization Chart: Task Structure and Key Personnel

A Pressure-Swing Process for CO₂ RCC to Methanol through Precise Control of Co-Located Active Sites in DFMs

Task 1: DFM Synthesis and Characterization

Task Leaders: Wilson McNeary (NREL) and Alan Weimer (CU) *Key Personnel*: Susan Habas (NREL), Hailey Loehde-Woolard (CU)

Task 2: RCC Evaluation

Task Leader: Anh To (NREL)

Key Personnel: Martha Arellano-Trevino (NREL), Wilson McNeary (NREL) Task 3: Process Modeling and Scale-up

Task Leader. Jennifer King (NREL)

Key Personnel: Jonathan Martin (NREL), Eric Tan (NREL), Staci Moulton (FN)

Task 4: Project Management and Planning

Task Leader: Dan Ruddy (NREL) Key Personnel: Alan Weimer (CU), Arrelaine Dameron (FN)

Gantt Chart

			Project Year/Quarter				
Task Name	Assigned Resources	0/Q4	1/Q1 1/Q2 1/Q3 1/Q4	2/Q1 2/Q2	2/Q3 2/Q4	3/Q1 3/Q2	3/Q3 3/Q4
Task 1.0 - DFM Synthesis and	Wilson McNeary;						
Characterization	Alan Weimer						
Milestone : DFM synthesis and	Wilson McNeary;		D.A.				
characterization	Alan Weimer						
Milestone : DFM performance in RCC	Wilson McNeary; Anh To		м				
Milestone : Demonstrate stable RCC	Wilson McNeary;						
performance under practical conditions	Anh To				I		
Task 2.0 - RCC Evaluation	Anh To						
Milestone : DFM performance in RCC	Wilson McNeary; Anh To		м				
Milestone : DFM stability	Anh To			м			
<i>Milestone</i> : RCC process evaluation with simulated flue gas	Anh To				м		
Milestone : Demonstrate stable RCC	Wilson McNeary;					м	
performance under practical conditions	Anh To						
Task 3.0 - Process Modeling and Scale-up	Dan Ruddy			1			
Milestone : Initial TEA/LCA model	Eric Tan			м			
Milestone : Identify critical hurdles	Arrelaine Dameron; Dan Ruddy					м	
Milestone : Final report	Dan Ruddy						м
Task 4.0 - Project Management and	Dom Duddu						
Planning	Dan Kuddy						

Task Start
 Task End
 Milestone
 Go/No-Go

I.

ALD/MLD Reactor at Univ. of Colorado-Boulder

 Al_2O_3 film on SiO_2

Ni particles on Al₂O₃

Adapted from Scheffe, J. et al. Thin Solid Films. 517, 1874-1879 (2009) Hakim, L.F. et al., <u>Chem. Vap. Deposition</u>, <u>11</u>, 420 (2005) Gould, T. et al. Journal of Catalysis, 303, 9-15 (2013) Lai*, A., Loehde-Woolard*, H. et al. Chem. Eng. Sci. 245, 116954 (2021)

Schematic of ALD/MLD Process Chemistry

PID for Commercial ALD/MLD from ForgeNano

DRIFTS (CO₂ adsorption)

[1] Pazdera, J.; Berger, E.; Lercher, J. A.; Jentys, A. Conversion of CO2 to Methanol over Bifunctional Basic-Metallic Catalysts. *Catalysis Communications* **2021**, *159*, 106347. https://doi.org/10.1016/i.catcom.2021.106347.

DRIFTS (N₂ purge)

 $\begin{array}{l} \mbox{APTES}_{graft}\mbox{-}5\%\mbox{ Pd/SiO}_2 \\ \mbox{DRIFTS}\mbox{ cell}\mbox{ at 70 °C} \\ \mbox{100}\mbox{ sccm}\mbox{ N}_2 \end{array}$

Band intensity decreases during purge

DRIFTS (T ramp under H₂)

APTES_{graff}-5% Pd/SiO₂ DRIFTS cell at 70 °C, ramp 5 °C/min 50 sccm N₂ 50 sccm H₂

Opportunity for RCC Deployment

- Methanol: vital precursor in the chemical market and intermediate to fuels gasoline, diesel, marine, and jet
 - Production: 100 MMT/y; 0.2 MMT/y renewable
 - Huge opportunity for low-carbon intensity MeOH

• Demand is rising world-wide

- Opportunity to increase US MeOH production
- Near-term opportunity for new technologies (RCC) to co-locate with new facilities
- Take advantage of logistical synergies, energy and off-take of low-C intensity MeOH

