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Goal: develop dual-functional material and process for capturing CO, from the airand converting it to RNG

Four parallel tracks in direct air capture materials synthesis/characterization, catalysts for CO, conversion,
mechanistic investigations via ab initio simulations, and process modeling and systems analysis



Methanation of CO, from the air can provide a distributable source of
long-duration energy storage using a (nearly) carbon-neutral fuel
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Our goal is to develop a material and process to directly convert
captured CO, into methane without explicitly requiring desorption
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regenerated adsorbent

CO,-depleted air

DAC CO,
Adsorption Regeneration Methanation

energy

air (410ppm CO,)  CO,-loaded adsorbent



Our goal is to develop a material and process to directly convert
captured CO, into methane without explicitly requiring desorption
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Amines have high CO, selectivity, capture kinetics, and capacity, and
may serve as a CO, transfer agent for low temperature methanation
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Hybrid organic-inorganic adsorbent-catalyst materials will allow
capture of CO, from the air and conversion into methane

By binding and reacting CO, as a carbamate or carbamic acid, we hypothesize...
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Bound CO, reactive species

Hypothesis 1: ...methanation will occur via a lower energy barrier pathway than for gas-phase CO, due to
activation by the amine ligand, allowing use of lower reaction temperature

Hypothesis 2: ...mechanism of bound-CO, hydrogenation avoids formation of C and coking/deactivation of
catalyst, reducing the need for catalyst regeneration



Project Methodology
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Reactive capture analysis
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comparison
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End-of-project success criteria: demonstrate 15% relative improvement in RNG Minimum Fuel Selling
Price and Carbon Intensity using a reactive capture process compared to baseline scenario(s)



Amines grafted on a variety of oxide surfaces can capture CO,

Grafted diamine
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Grafted amines show oxide surface-dependent thermal stability at
temperatures relevant to CO, methanation
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Sio, 0.50 0.57 0.55 0.35
Al,O, 0.54 0.63 0.29 0.05
TiO, 0.18 0.23 0.28 0.22

We have synthesized several materials with DAC capacity > 0.25 mmol CO, / g material (Milestone #1)
that retain DAC capacity after an extended thermal treatment at methanation-relevanttemperatures



Strong-electrostatic adsorption produces catalytic materials with high
metal dispersion and active metal at relevant reaction temperatures

Temperature-Programmed Reduction
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We have developed materials capable of CO, methanation within the

stability window of our grafted amines
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We have the individual components - how might their interactions
affect the reaction mechanism?

Bound CO, reactive species
Carbamic acid model for amine-bound CO,:

Se%e.§ - gﬁf{.

Simplify

methylcarbamic acid



Amine ligand stabilizes undercoordinated species such as surface C
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Amine ligand stabilizes undercoordinated species such as surface C
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Amine ligand stabilizes undercoordinated species such as surface C
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The mechanism for reaction of amine-bound CO, is likely to have different
rate-limiting steps compared to the traditional CO, methanation pathway



Stepping back to the bigger picture: how else can low-carbon natural
gas be made and how do we compare?

Cyclic adsorption-methanation process

renewable natural gas (CHa) Baseline scenarios forcomparison:

(1) business-as-usual shale gas production
+ DAC to achieve carbon neutrality

(2) conventional RNG production
(e.g. biogas water scrubbing)

(3) RNG production with CCS
(e.g. biogas with amine capture)

(4) separate DAC + CO, methanation
processes
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As a long-term energy storage technology, RNG has many possible
options with different energy efficiencies of production
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Our direct air reactive capture and methanation process may be a competitive alternative
to other forms of RNG production for efficient long-duration energy storage




Coming up next...
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CO, reactive capture and methanation shows potential promise as a
technology for long-duration energy storage
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Budget Period: BP1 BP 2
Tasks, Milestones, and Deliverables Project Year: Oct ‘21 — Sep 22 Oct ‘22 - Sep ‘23 Oct ‘23 - Sep ‘24
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Task 0: Project management and planning

Task 1: Synthesize hybrid adsorbent-catalyst materials

Task 2: Evaluate adsorption performance with dilute CO2

Milestone 1: Measured DAC adsorption capacity >0.25 mol CO2/kg v
Task 3: Characterize catalysts and perform methanation with dilute CO:
Milestone 2: Achieved >25% CO2 single-pass conversion from dilute CO2

Task 4: Simulate interaction between captured CO2 and single-atom catalyst site
Milestone 3: Established energetics for conversion of captured COz into CHs
Task 5: Develop preliminary technoeconomic assessment

Deliverable 1: Report detailing preliminary technoeconomic assessment

Task 6: Develop preliminary life cycle assessment

Deliverable 2: Report detailing preliminary life cycle assessment

Milestone 4: Downselected material composition

Success Criteria BP1: Demonstrate 10% improvement in RNG MFSP and carbon intensity compared to baseline

Task 7: Synthesize second-generation materials

Milestone 5: Measured DAC adsorption capacity >0.40 mol CO2/kg

Task 8: Develop cyclic air capture-methanation process and test performance

Milestone 6: Converted >50% of captured CO2 into CHa

Milestone 7: Retained >75% performance after extended cyclic operation

Task 9: Simulate adsorption and conversion processes with humidity

Task 10: Refine technoeconomic and life cycle analyses

Deliverable 3: Report documenting refined TEA and LCA for DAC-RCC process

Success Criteria BP2: Demonstrate 15% improvement in RNG MFSP and/or carbon intensity compared to baseline




