Unique Nanotechnology Converts Carbon Dioxide to Valuable Products

(DOE Award #: DEFE0031707)

Bingyun Li, PhD (WVU) Badie Morsi, PhD (Pitt) Jingxin Wang, PhD (WVU)

(A). Previous Data

Computational analysis and lab studies identifying amino acids (AAs) that convert CO₂ into nanomaterials

<u>Fig. 1.</u> (A) Reactions involved. Optimized structures of Alanine or Ala (B) and (C) its capturing of CO_2 . The charge on each atom is indicated in the figure.

Gly salt solvent converted CO₂ to bicarbonate nanomaterials

Fig. 2. Glycine (Gly) sodium salt solvent: (**a**) Nanofiber formation and (**b**) species changes in solvent vs. CO_2 absorption time. (**c**) ¹H (upper) and ¹³C (lower) nuclear magnetic resonance (NMR) spectra after CO_2 absorption. (**d**) CO_2 absorption and desorption in two cycles. (**e**) Nanofiber re-formation after CO_2 absorption, desorption, and re-absorption. Gly was 25 wt%.

(B). Project Objective and Research Team

Overall Project Objective

To develop and test an innovative nanotechnology that can utilize CO₂ from coal-based power systems or other industrial sources as the primary feedstock to produce commercially valuable products.

Project Tasks

- Task 1: Project management and planning (Li, Morsi, Wang)
- Task 2: Technology maturation plan (Li, Morsi, Wafle)
- Task 3: Lab-scale unit modification (Li)
- Task 4: Selection of best candidate amino acid solvent (Li)
- > Task 5: Process optimization to produce high-purity nanomaterials (Li)
- Task 6: Life cycle assessment (LCA, Wang)
- Task 7: Process and techno-economic analysis (TEA, Morsi)

Project Funding, Team, and Industry Sponsor

Funding: DOE-NETL: \$800,000; Cost-share: \$218,205

- Bingyun Li, PhD (PI, WVU)
- Badie Morsi, PhD (Co-PI, Univ. of Pitt)
- Jingxin Wang, PhD (Co-PI, WVU)
- > Trina Wafle (Co-I, WVU)
- > Ron Rosinski (Longview Power, LLC)

Naomi R. O'Neil (Project manger, NETL)
(Andy Aurelio, Steven A. Mascaro; NETL)

(C). Accomplishments (Task by Task)

Task 1: Project management and planning

Task 2: Technology maturation plan

A. TARGET COMMERCIAL APPLICATION

The proposed carbon capture and conversion technology encompasses addresses two market segments:

- Those who want to capture carbon
- Those who want to use the byproduct

B. CURRENT TECHNOLOGY READINESS LEVEL - BEGINNING OF PROJECT TRL

- AA salt solvent: TRL 2-3
- Process engineering system: TRL 1

C. PROPOSED WORK – END OF PROJECT TRL

- AA salt solvent: TRL 4
- Process engineering system: TRL 4

D. POST-PROJECT PLANS

To seek funding to pursue the three switchable pathways for cost-effective carbon management under various conditions (flue gas, direct air capture, *etc.*)

Task 3: Lab-scale unit modification

Fig. 3. Three mass flow meters were purchased and assembled.

Task 4: Selection of best candidate AA solvent

> Technology development — Phase-change AA nanotechnology:

Phase-Change AA Nanotechnology Li B, *et al.* Amino acids react with carbon dioxide (CO₂) and form nanofibers and nanoflowers. US patent US10,583,388. Date of patent granted: March 2020.

WestVirginiaUniversity.

NATIONAL ENERGY TECHNOLOGY

Before CO₂ bubbling

After CO₂ bubbling

Three-Switchable Pathways

Fig. 4. Schematic diagram of the innovative phase-change nanotechnology process with *three flexible product pathways* for carbon reduction or utilization.

> Optimization and reproducibility:

Fig. 5. 20 AA salt solvents after reacting with pure CO_2 .

the "milky" phase and ~95% as NaHCO₃.

Fig. 8. Nanofibers developed by multiple individuals and at different times.

Task 5: Process optimization to produce high-purity nanomaterials

Fig. 9. Strategies to achieve high-purity bicarbonate: (a) Solubility differences, and (b) Freeze dryer.

Task 6: Life cycle assessment (LCA)

> Objective:

 Develop a cradle-to-gate LCA model to quantitatively evaluate the environmental impacts, especially the global warming potential (GWP) impact, of the AA-based phase-change processes for both CO₂ capture and CO₂ utilization.

> Method:

- Integrated consequential and attributional cradle-to-gate LCA with TRACI 2.1 to quantify the life-cycle environmental impacts.
- Carrying out TEA of the CO₂ capture process using Gly to produce bicarbonate nanomaterials using Aspen Plus v.10.

Scheme 1. Analysis modeling framework of LCA.

Scheme 2. (a) CO_2 utilization process to produce nanomaterials and (b) CO_2 capture process to obtain CO_2 for sequestration.

> Environmental impact:

Fig. 10. Normalized life-cycle environmental impact of (a) CO₂ capture process and (b) CO₂ utilization process for coal-fired flue gas by impact and unit process.

> Environmental impact – GWP:

- CO₂ utilization process (pathway i): the overall GWP impact is (-2367.61) ton CO₂ eq./1,000 ton CO₂ utilization.
- CO₂ capture process (pathway ii): the overall GWP impact is 303.47 metric ton CO₂ equivalent (eq.)/1,000 metric ton CO₂ captured.

> Economic impact:

- CO₂ utilization process (pathway i): The operation of 1,000 ton CO₂ utilization can provide 2.44-3.25 employment, \$196,591-261,591 labor income, \$150,663-476,659 value-added, and \$1,045,944-1,528,849 industry output.
- CO₂ capture process (pathway ii): The operation of 1,000 ton CO₂ capture can provide 0.29-0.35 employment, \$21,231-25,199 labor income, \$50,246-52,300 value-added, and \$102,777-107,570 industry output to the national economy.

Task 7: Process and techno-economic analysis (TEA)

Fig. 11. Schematic diagram of our innovative phase-change nanotechnology approach with three potential product pathways for carbon management.

> Objective:

To use Aspen Plus v.10 to perform TEA of the post-combustion CO_2 capture process using actual plant flue gas and Gly in two pathways:

- Pathway (i) to capture CO₂ to produce innovative sodium bicarbonate (NaHCO₃) nanomaterials.
- Pathway (ii) to capture CO₂ for Enhanced Oil Recovery (EOR) or sequestration purposes.

Case study — Case 1: Flue gas from Wolverine Coal Power Plant (600 MWe)^[1] representing 10 MWe

Pressure	1 atm	
Temperature	353.15	K
Flow rate	12.43 12.38	kg/s m³/s
Components	mol %	wt %
CO ₂	13.33	20.18
H ₂ O	12.31	7.63
N ₂	70.36	67.79
0 ₂	4.00	4.400
SO ₂	2.35×10 ⁻³	5.20×10 ⁻³

Table 1. Flue gas pressure, temperature, and composition.

[1] Hoffman, H., Wu, S., Pardini, R., Tripp, E., & Barnes, D. (2010). *Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project*. Wolverine Power Supply Cooperative.

Pathway i: Process for CO₂ capture to produce NaHCO₃ nanomaterials

Process main units and constraints

Main units

- Washing unit (WU)
- CO₂ capture unit (CAU)
- Reserve Osmosis Unit (ROU)
- NaOH makeup chamber
- Ultrafiltration and NaHCO₃ production Unit (UFU)

<u>Constraints</u>

- 99.9% SO₂ removal
- \geq 90 mol% CO₂ absorption in CAU
- No flooding in WU and CAU
- Packing height to diameter ratio ≥ 6
- The water content in CO₂ stream for sequestration ≤ 600 ppm

TEA calculations

CAPEX = Cost of all process units and rotating equipment $OPEX_{2020} = (37 \sum W) + C_{NaOH} \dot{m}_{NaOH} - C_{NaHCO3} \dot{m}_{NaHCO3} + 0.04(CAPEX_{2020})$ $LCOC = (\frac{f_{CR}}{f_c}) \sum (CAPEX_{2020}) / \dot{m}_{CO2} + OPEX_{2020} / \dot{m}_{CO2}$ $f_{CR} = \frac{i(1+i)^N}{(1+i)^N - 1}$

TEA of pathway (i)

Cost category	Cost	
Total CAPEX, 2020 \$	4,450,552	
NaOH makeup, \$/h	3,460	
NaHCO ₃ production, \$/h	-3,278	
Total OPEX, \$/h	233	
<i>ṁ_{CO2}, ton/h</i>	8.47	
NaHCO ₃ produced, ton/h	16.15	
Total LCOC, \$/ton CO ₂	<u>35.49</u>	
*Chy adjum calt is used for the TEA		

*Gly sodium salt is used for the TEA. CAPEX: Capitol cost OPEX: Operating cost LCOC: Levelized cost of CO₂ captured

West Virginia University.

 $f_{CR} = 0.106079 = Capital recovery factor, 1/yr$ $f_{\rm c}$ = Capacity factor = 0.8 Electricity cost = 37 \$/MWh^[2] W = total power requirements, MWe C_{NaOH} = NaOH makeup cost^[3] \dot{m}_{NaOH} = NaOH makeup, ton/h $C_{NaHCO3} = NaHCO_3$ produced prices, \$/ton^[4] \dot{m}_{NaHCO3} = NaHCO₃ produced, ton/h O & M cost = 4% of the total CAPEX in \$/yr \dot{m}_{CO2} = CO₂ captured, ton/h N = project lifetime, 30 yrsi = discount rate = 10%/yr

University of

Pittsburgh

[2] NaHCO₃: https://www.alibaba.com/product-detail/Nahco3-Nahco3-Bicarbonate-Sodium-99-Stain_1600164672445.html?spm=a2700.galleryofferlist.normal_offer.d_title.1df1215fLzYXIB&s=p
 [3] NaOH: https://www.alibaba.com/product-detail/Naoh-Naoh-Sodium-Hydroxide-Price-Sodium_1600193949000.html?spm=a2700.galleryofferlist.topad_creative.d_title.79a5125bELCd9P
 [4] NREL, Commercial electricity rate in Industry, https://www.electricitylocal.com/states/pennsylvania/industry/#ref.

TECHNOLOGY

Pathway (ii): CO₂ capture for EOR or sequestration purposes

TEA comparison between Gly and MEA

Cost category	Gly Pathway (i)	Gly Pathway (ii)	MEA Pathway (ii)	
Total CAPEX, 2020 \$	4,450,552	12,085,346	\$14,596,990	
NaOH makeup, \$/h	3,460			
NaHCO ₃ production, \$/h	-3,278			
Total OPEX, 2020 \$/h	233	250	420	
<i>in_{co2}, ton/h</i>	8.47	8.21	8.27	
NaHCO ₃ produced, ton/h	16.15	-	-	
Total LCOC, \$/ton CO ₂	<u>35.49</u>	<u>52.68</u>	<u>77.52</u>	

*MEA: monoethanolamine.

Case study — Case 2: Flue gas from Longview Power plant (780 MWe)^[5] representing 10 MWe

Pressure, atm	1		
Temperature, K	324.82		
Flow rate	11.82	kg/s	
	10.52	m³/s	
Components	mol %	wt %	
CO ₂	12.022	17.668	
СО	3.144e-3	2.94e-3	
O ₂	4.79	5.12	
N_2	79.198	74.086	
H ₂ O	0.03	1.805	
Ar	0.98	1.307	
SO ₂	3.319e-3	7.10e-3	
NO ₂	3.547e-3	5.45e-3	

Table 2. Flue gas pressure, temperature, and composition.

[5] Ron Rosinski (Personal communication, April 29, 2021)

TEA comparison between Gly and MEA

Cost category	Gly Pathway (i)	Gly Pathway (ii)	MEA Pathway (ii)
Total CAPEX, 2020 \$	4,171,205	10,749,326	\$13,177,583
NaOH makeup, \$/h	2,823		
NaHCO ₃ production, \$/h	-2,674		
Total OPEX, 2020 \$/h	175	191	322
\dot{m}_{CO2} , ton/h	6.90	6.89	6.95
NaHCO ₃ produced, ton/h	13.17	-	-
Total LCOC, \$/ton CO ₂	<u>34.51</u>	<u>51.34</u>	<u>75.03</u>

Production of Inorganic Materials – Solid Carbon Products

Technology Performance Data

	Unite	Measured/Current	Projected/Target		
		Performance	Performance		
Reaction Thermodynamics ^{1,2}					
Reaction ³		Thermochemical reaction			
Chemical Equation		(1) $OOCCH_2NH_3^+ + OH^- = OOCCH_2NH_2 + H_2O$ (2) $CO_2(g) + 2 OOCCH_2NH_2 = OOCCH_2NHCOO^- + OOCCH_2NH_3^+$ (3) $OOCCH_3NHCOO^- + H_2O = OOCCH_3NH_2 + HCO_3^-$			
ΔH° _{rxn}	kJ/mol	(1) -88.66 (2) -139.24 (3) 34.94			
ΔG° _{rxn}	kJ/mol	(1) -93.20 (2) -97.14 (3) 28.56			
Reaction Conditions					
CO ₂ Source ⁴	-	Coal-fired flue gas	Coal-fired flue gas		
Catalyst5		None	None		
Drossure	-	None None			
CO. Dortiol Pressure	bar	0.124			
	bar	0.124	51.67		
Temperature	L	51.6/ <u>51.6</u> /			
Nominal Residence Time ⁵	Sec	34.6 34.6			
Unce-Inrougn Performance	0/				
CO ₂ Conversion ^o	%	90.4	92.0		
Selectivity to Desired Product ⁹	%	99.88	99.88		
Yield of Desired Product ¹⁰	%	90.31 91.89			
Product Composition			1		
Desired Product ¹¹	-	NaHCO ₃ nanomaterials	NaHCO ₃ nanomaterials		
Main Product Impurities ¹²	-	0.05% carbamates 0.05% carbamates			
Purity of Finished Product ¹³	%	99.95 99.95			
Product Production ¹⁴	kg/hr	92,566 470,918			
Co-Products ¹⁵	-				
Co-Product Production ¹⁶	kg/hr		l		
Product Properties ¹⁷			1		
Density	kg/m ³	TBD	2,159		
Particle Size	(microns)	0.045×15 0.045×15			
Surface Area	m²/g	TBD 141.23			
Commercial Product Properties ¹⁸		Current			
Density	kg/m ³	2,200			
Particle Size	microns	44			
Surface Area	m²/g	0.062			
U.S. Market Size	Tonnes/yr	1.1 milli	ion (2021)		
Global Market Size	Tonnes/yr	5.7 milli	ion (2021)		
Market Price	\$/kg	0.26 - 0.30 (2021)			

TBD: to be determined.

Summary

Fig. 12. Development of an innovative phase-change nanotechnology with *three flexible product pathways* for carbon reduction or utilization.

Converting CO₂ into Nanomaterials

Longview (our collaborator)

Before CO₂ bubbling

Innovative process (Patent US10,583,388)

Final products

After CO₂ bubbling

Product Market Potential

Sodium Bicarbonate Market

- 5.7M tpy: 3M tpy CO_2 to meet current market (33.4B tpy CO_2) produced globally)
- ✤ \$9B by 2024 (Global Market Insights-GMI)
- ✤ 5.3% annual compound growth (GMI)
- ✤ 24% animal feed 20% food (IHS Markit)
- Flue gas sulfur removal, pharmaceuticals, detergents, cosmetics, explosives, pigments, fire extinguishers, etc.

WVU's Unusual Shapes \rightarrow New Applications - Drug Encapsulation

- ♦ \$9.1B 2020 (Transparency Market Research)
- Templates to make hollow micro- and nano-structured materials

Microcapsules from sunflower pollens.

Human T cell

- AA candidates for phase-change CO₂ conversion have been identified and optimized for an innovative phase-change CO₂ management process with three potential pathways.
- The environmental and economic impacts of our technology have been assessed using life cycle assessment and an economic input-output model. The results have indicated that the CO₂ utilization process could be carbon negative. The operation of 1,000 ton CO₂ utilization can annually provide 2.44-3.25 employments, \$196,595-261,591 labor income, \$150,663-476,659 value-added, and \$1,045,944-1,528,849 industry output to the US economy.
- Using the actual flue gases from two power plants in the US, our TEA has shown that the unique phase-change nanotechnology is cost-effective and achieves much lower LCOCs compared to MEA, as shown below

	Wolverine Coal Power Plant			Longview Power Plant		
Cost category	Gly	Gly	MEA	Gly	Gly	MEA
	Pathway (i)	Pathway (ii)	Pathway (ii)	Pathway (i)	Pathway (ii)	Pathway (ii)
Total CAPEX, 2020 \$	4,450,552	12,085,346	\$14,596,990	4,171,205	10,749,326	\$13,177,583
Total OPEX, 2020 \$/h	233	250	420	175	191	322
Total LCOC, \$/ton CO ₂	35.49	52.68	77.52	34.51	<mark>51.34</mark>	75.03

> Publications (6):

- Wang R, Ashkanani HE, <u>Li B</u>, and Morsi B. (2022) Development of an innovative process for post-combustion CO₂ capture to produce high-value NaHCO₃ nanoparticles. Int J Greenhouse Gas Control 120:103761.
- Bao Z, Li Q, Akhmedov NG, Li BA, Xing M, Wang J, Morsie BI, <u>Li B*</u>. (2022). Innovative cycling reaction mechanisms of CO₂ absorption in amino acid salt solvents. Chem Eng J Adv 10:100250.
- Li Q, Bao Z, Akhmedov N, Li BA, Duan Y, Xing M, Wang J, Morsi BI, <u>Li B*</u>. (2022). Unravelling the role of glycine in K₂CO₃ solvent for CO₂ removal. Ind Eng Chem Res DOI: https://doi.org/10.1021/acs.iecr.2c01637.
- Wickramasinghe S, Wang J, Morsi B, <u>Li B*</u>. (2021). Carbon dioxide conversion to nanomaterials: Methods, applications, and challenges. Energy & Fuels 35(15):11820-34.
- Wang X, Bao Z, Akhmedov NG, Hopkinson D, Hoffman J, Duan Y, Egbebi A, Resnik K, <u>Li B*</u>.
 (2022). Unique biological amino acids turn CO₂ emission into novel nanomaterials with three switchable product pathways. ACS Nano (submitted).
- Zhang X, Wang J, Li B, Morsi B, Wang R. (2022). Environmental and economic impacts of an innovative amino-acid-based CO₂ capture and utilization technology and its decarbonization pathways. Ready to be submitted.

Acknowledgement

Funding: DoE/NETL

<u>**Trainees:</u>** Zhenghong Bao, Ross Fladeland, James Mersch, Alexa Sowers, Rui Wang, Ryan Wager, Sameera Wickramasinghe, Xufeng Zhang,</u>

Collaborators:

(Current) Badie Morsi, Jingxin Wang,

Trina Waffle, Ron Rosinski

NETL project manager: Naomi R. O'Neil (Andy Aurelio, Steven A. Mascaro)

Trainees Since 2005 (103):

- o PhD students
- o master's students
- o undergraduate students
- **o MD students**
- high school students
- postdoctoral fellows
- o orthopaedic residents
- $\ensuremath{\circ}$ visiting scholars

