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Project Overview

— Overall Project Objectives

 Advance the TRL through experimental and modeling to
enhance the efficiencies while assessing the TEA/LCA of a
dual functional catalytic porous polymer for simultaneous
capture and conversion of CO, to value added chemicals

(formic acid initially) under natural gas combined cycle
(NGCC) application

— Funding $1M/year total, 3 yeary
« 10/1/2021 — 9/30/2025 s .
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Design Considerations for CO, Reduction
to Formic Acid
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Pathway to Products: Chemical Targets

Potential to upgrade value of CO,by over 60 times ($20 to $1300/ton) into a zero-carbon
chemical/fuel at an estimated 30% lower cost than existing fossil base synthesis routes.
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Pathway to Products: Chemical Targets

Potential to upgrade value of CO,by over 60 times ($20 to $1300/ton) into a zero-carbon
chemical/fuel at an estimated 30% lower cost than existing fossil base synthesis routes.
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and methanol. _
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« Emits 3076 kg CO, per 1 T of formic acid.
« Whereas 100 kg CO, emitted if CO, hydrogenation
Eormic process was used.
|
Silage Nat. Commun, 2014, 5, 4017 and Chem. Soc. Rev., 2014, 43, 7982 :
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Hybrid Systems for a Holistic Approach

Solvent/unreacted CO, and H,

CO,/solvent/H,

Choice of solvent

aids upstream Catalytic porous polymer Choice of solvent
CO, capture 60 bar ,
_ allows simple
Mild T (<40 °C) downstream
* separation
Mild conditions enable Formic
catalyst stability; acid

CO, selective polymer
makes material robust to
non-CO, species (e.g. N,)



Project goals

yearg Seale up Batch to Flow Process Scale up

e TRL2to4 * Increase efficiency  pemonstrate
Year 1 * 20gtoca 1kg (decrease catalyst  « pench flow
- Synthesis scale up : content/cheaper reactor operation
« Determine catalyst cat.) » Process scale
efficiencies * 50 mg working simulation
~ Kinetic and size to #grams « TEA/LCA results

thermo. models

« MFIX and CFD model
of CCR-best design?

Year 2

« Batch to flow bed
reactor; pellet forms

« Optimize CPASs

and guidelines

— packed bed
models to inform / o
MFIX © [‘—l:' i
T N
Year 3 - i' —— oy
« Cost analysis T2 I - ﬁ
« Bench to -

demonstration



Development of Catalysts

« Developing porous
polymer catalysts

— Build rigidity into the
structure to open
porosity and
accessibility of active

SEM HV: 20.0 kV WD: 14.68 mm MIRA3 TESCAN| SEM 2

-
View field: 104 ym | Det: SE 20 ym View field: 104 ym Det: SE 20 ym S I te S
SEM MAG: 2,00 kx Date(m/dly): 09/24/20 | Performance in nanospace SEM MAG: 2,00 kx Date(m/dly): 09/24/20 | Performat in nanos;

— Scaled oneto 1 kg

— Understand the
mechanism of catalyst
« Sorption
« Thermodynamics
« Kinetics

Templ LG e Potential need for

o BT e - pelletization when
EDS image of Polymer and Polymerwith Ru 11 wt% scaling up

SEM image of Polymer, and Polymer with Ru 11 wt%



Material Performance and Characterization

Formic
Acid
Material Process Efficiency Selectivity
Efficiency
_ Low temperature reaction Selective to CO,
High surface area conditions: CO, andH, @ (CO,:N,=26:1) @ 25 C
(616 m?/g via BET; ca. 60 bar totaland <40 C (CO,:.CH, = 20:1)
349m?/g due to micropore)
. CO, uptake @54 bar/30 C High product selectivity to
Excellent porosity = 7.2 mmol/g Formic acid 100%
(093 Cm3/g tOtaI pores,; 0.4 >3.0 mm0|/g w/ Ru 11wt% (no Separation needed)
cm?3/g micropores)

adsorption
* |soteric heats of adsorption ca. 28 kJ/mol for physisorption of CO,

» Notable: pore size ranged 7-14 Angstrom; ideal for H, storage, and CO,



Separation of Product

Polymer-Ru-13wt% 1:1 CO,/H, at 60 bar 40 C
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Predicting Performance of Materials

CO, sorption model @ 25°C
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Catalytic Results (batch)

Catalyst CO, H, Temp MeOH TON*
(bar) (bar) (C)

Ru-13 wt%

40 20 40 513
20 40 40 295
30 30 40 50 uL 584
30 30 40 150 uL 0

30 30 60 0

Ru-5wt% 30 30 40

40 20 40 654
20 40 40 483
30 30 40 50 uL 803

« 100 mg polymer catalyst: 11 mL triethylamine

« TON = mol of reactant consumed/mol of catalyst
» Decreased loading decreases cost!

e (Other metals? Solvents?
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Polymer Catalyst Stability




|_ab Scale Fixed Bed Tests

Bubblers for humidity —we can
measure, not really control

Plumbing for fast switching of
flow conditions

2 CO, Analyzers
2 Flow Heaters

Flow Control
N, and CO,

LabVIEW Software
Air is available
Pressuretransducers

available



Preliminary Simulation Results

Initial breakthrough around 10s and overall shape is captured CO2/N2 mix 1:9
Simulation results can capture many of the trends observed experimentally

However, heat dissipative effects that lead to the plateauing behavior are not captured and
further tuning of the heat transfer model is required

Preliminary testing showed that temperature profiles are sensitive to the thermal
capacitance of the wall, but not to the external convective heat transfer coefficient
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Plans for future testing/development/
commercialization
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Measure and Optimization of CPAs for
CO, Conversion

CO,, H,, TEA
Formic Acid
/ \'}E' 1-100 bar
LA 25-100°C

4

CO,, H,, TEA
1-100 bar
25-100 °C

Reaction mechanism

Rate equations

Kinetic parameters

Mass and heat transport parameters
Material property relationships

Catalyst AND Process Design in Tande
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Flow Reactor

liquid
flllne

pressure/gas feed line
I qu d/gas
c1rculat|on@ reulatio
loop
L e |
— —— MFC — J7 ﬁ&

Reater analytical
instruments

vent

—<

—><

[><j—s=_ fixedbed |

=]

Features i' 2 ‘ |

o o O condenser/
« Gas-liquid mixer
p:arie computer control collection
+ data acquisition

« Max Pressure 100 bar

« Liquid-liquid separator
 Recirculation of solvent/gas
 Software control and analysis

« Chemical compatibility with products (formic
acid)




Envisioned System

Clean Flue Gas

Concept 1
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\ A
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Major differences in our application:
e Ourseverity (T&P) is FAR lower
* Our solids addition rate is FAR higher
* Depending on gas rate, ebullation system might not be needed



NGCC with CO2 Capture ver 12

Carbon Capture
System
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https://youtu.be/UD2fS1hKbUQ

Predicted CapEx for Formic Acid
Synthesis Electrochem. Plant from CO,

Important EPE for hydrogenation to formic acid.

Indicator ‘/measure Value m Electrolysis
Technical TRL 3-5 ® Compression
Typical operating temperature [C) a0 w Separation
Typical operating pressure (bar) 100
Typical overall CO, conversion (%) 96 Reactor
Plant operational lifetime (yr) 20 ® Heat Exchangers
) . o ® Purification
Economic Total CAPEX (£/1 formic acid) 57.58
Total OPEX (£t formic acid) 1301 ® Pumps
Product price (£/1 formic acid) 354.5
Environmental Electricity usage (MWh/T formic 4.1
acid)

Net OO utilisation (1/t formic acid) 2521 Int. J. Hydrog. Energy, 2016, 16444

Savings in fuel oil, steam and water equals
reduced environmental impact and

potential to utilize up to 21 Mtof CO, —— ~ Comventgnal
annua"y hydrogenation  process
Electricity requirements (MWh,t formic acid) 4.07 155
Steam requirements (G formic acid) 10,03 19.25
Cooling water requirements (t HaO/t formic add) 251.5 375.5

Process water requirements (t HyO/1 formic acid)  0.59 0.60




Outcomes Expected from Process
Intensification Approach

Versatile toolset for understanding the
behavior and characterizing the performance
of energy conversion processes

Experimental data

Proof of concet
Provide data
Effect of T, p, F, Cco,

Cost:
material

Accelerate reactor developmentand
reduce cost by using multiphase flow
reactor modeling and simulation tools

TEA analysis

Material cost
Process cost
Sets a target

Optimizes performance for equipment and
unit operations, enabling more throughput
and less process downtime

Effect of T, p, F, Cco,
Catalyst area

Reactor modeling
Reduces design risks when validated by
predictive science-based calculations,
lowering risk in obtaining return on
investment

Heat, mass transfer analysis
Reactor configurations
Maximixe yield



Summary Slide

« Scaling the polymer and catalyst has been reproducible
« 1 kg of polymer produced
» Decent carbon capacities of 4-7 mmol/g CO, at 40-54 bar; model
validation
« Batch reactions; <40 °C and >60 bar are current ideal conditions (batch)
» Reactions complete in 24 h;

* Pressuretoo low to continue and/or surface coated with product;
packed bed/flow will over come this issue

e Less catalyst increased TON
« Selective for CO, (upstream); ease of separation (downstream)
* Pure product
 Initial packed bed testing and simulations
« Future plan:
« Lower cost catalyst and optimal reaction conditions
« Packed bed experiments feed back with models; flow rate and resonance
time, pellet development 24
« TEA/LCA
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Organization Chart

Michelle Kidder: Task 1
Project Management

Michelle Kidder: Task 2,4,6,8 - Mehrdad : Task 7
" Modelling

Syn and Reactor dev.
_ William Rogers: Task 7 = "
MaryAnn Clarke : Task 7
ORNL Postdoc: Task 2-6 | | Luke Daemen: Task 2,3,6 NETL _ E Modelling
Bench reactor Synthesis and reactor —— . \
: Bruce Adkins & . :
| . | Hossain Aziz: Task
Canan Karakaya: N
\| Shannon Mahurin: Task 3,4,5,8 Task 5 8 7
Bench reactor | kinetic models Modelling
Ikeena OkekeTask 6,9
TEA, LCA
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Gantt Chart

BP1 (9/01/21-9/30/22)

BP2 (10/01/22-09/30/23)

BP3 (10/01/23-09/30/24)

Organizations | Task # Tasks and Subtasks (ST) Start End Q Q2 Q3 Q4 Qs Q6 R4 Q8 Q Qo Qu Q2
9/01/21- 1/01/22- 04/01/22- | 07/01/22- | 10/01/21- 1/01/23- 04/01/23- | 07/01/23- | 10/01/23- 1/01/24- | 04/01/24- | 07/01/24-
date date 12/31/21 03/31/22 | 06/30/22 | 09/30/22 | 12/31/22 03/31/23 | 06/30/23 | 09/30/23 | 12/31/23 03/31/24 | 06/30/24 | 09/30/24
ORNL-Kidder | Task 1 |Project management and planning 9/1/2021 | 9/30/2024
ORNL Task 2 | Scale up Production of PIM-TB 9/1/2021 | 6/30/2022
Daemen ST 2.1. Custom design synthetic reactor 9/1/2021 | 3/31/2022 _| |
Kidder ST 2.2. Optimization of reaction scale from 20g to 100g 4/1/2022 | 6/30/2022 M
ST 2.3. Characterization and evaluation of PIMs 4/1/2022 | 6/30/2022 M
ORNL Task 3 [ Construct and Commission Dedicated Bench Scale Reactor 10/1/2021 | 6/30/2022 *|
Mahurin ST 3.1. Design and purchase of reactor 10/1/2021 | 4/31/2022 # I
ST 3.2. Testing of reactor flow and various particle size PIMs 2/1/2022 | 6/30/2022 _|
ST 3.3. Analysis of Reaction Products with various PIMs and process conditions 4/1/2022 | 6/30/2022 ——
ORNL Task 4 | Measure and Optimization of Critical Performance Attributes (CPAs) for CO, Capture 6/1/2022 | 3/31/2023
Kidder ST 4.1. Extract and complie key parameters to model performance 6/1/2022 | 3/31/2023
Mahurin
Adkins
ORNL Task 5 |Measure and Optimization of Critical Performance Attributes (CPAs) for CO, Conversion to Formic Acid § 7/1/2022 | 3/31/2024 | | | | |
Mahurin ST 5.1. Measure temp/pressure residence time kinetic envelope for the reaction 7/1/2022 | 12/31/2022 | ’
Adkins ST 5.2. Down selected parameters identified 12/31/2022 | 9/30/2023 : : :
ST 5.3. Develop and verify predictive models 4/1/2023 | 3/31/2024 : : :
ORNL Task 6 |Optimization of PIM Design for capture and conversion 10/1/2022 | 6/30/2024 : : :
Kidder ST 6.1. Understand impact of particle structure on CP parameters 7/1/2022 | 6/30/2024 e S S S S p—
Das ST 6.2 Assess CAPEX and TEA 6/30/2023 | 6/30/2024 | | | | ' !
NETL Task 7 |Computational modeling of CO, capture step and particle-gas separation step to evaluate capture efficie] 10/1/2021 | 9/30/2024
Rogers Described in FWP-PMP for NETL team I I I
ORNL Task 8 | Experimental measurement of CO, reaction to formic acid at bench scale at process conditions 4/1/2023 | 9/30/2024
Mahurin ST 8.1. Data mining for kinetic models 4/1/2023 | 9/30/2024
Kidder/Adkins ST 8.2. Full capture and conversion cycle demonstrated on bench scale reactor 1/1/2024 | 9/30/2024
ORNL Task 9 | Process Modeling and TEA/LCA 9/1/2021 | 9/30/2024
Das ST 9.1. Development of full-scale process models for capture and conversion 9/1/2021 | 12/1/2022 |
ST 9.2. Operation of process models to achieve DOE targets 10/1/2022 | 9/30/2023
ST 9.3. Economic Analysis and Life Cycle Analysis 4/1/2023 | 9/30/2024
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Natural Gas: Far Less Pollution
(tons per year per MWatt)




Appendix

are mandatory. Global greenhouse gas emissions by sector

This is shown for the year 2016 — global greenhouse gas emissions were 49.4 billion tonnes CO,eq.
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OurWorldinData.org - Research and data to make progress against the world’s largest problems.
Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

— These slides will not be discussed during the presentation but
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100

Thermal stability

Ru 3p3/2 462.57

Ru 3* species ||
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N |
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|
/
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-3 \H\
. I
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Material is thermally stable in air up to 300°C, meets demands for
applications in CO, uptake and heterogenous catalyst

. : . 30
Recycle of catalyst maintains integrity of Ru 3* species.



Tasks

1. Scale up of Polymer
2. Constructand Commission Bench Scale Reactor

3. Measure, Optimize Critical Performance Attributes (CPA) of CO, Capture
and Conversion

4. Optimize Catalyst design for capture and conversion

5. Comp. Modeling of capture, separation, capture efficiency and fluidization
properties

6. Experimental measurement of product formation at bench scale at process
conditions

7. Assess feasibility TEA/LCA




