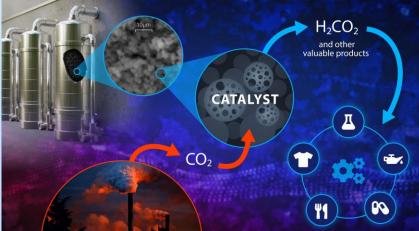
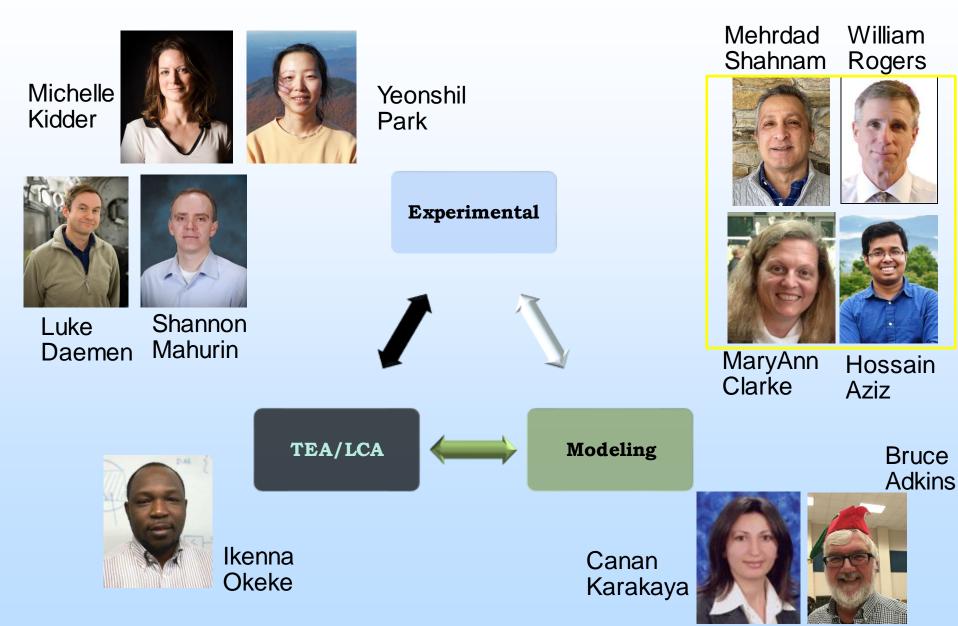
Porous Catalytic Polymers for Simultaneous CO₂ Capture and Conversion to Value-Added Chemicals

FWP-FEAA421-FY22


Michelle K. Kidder Oak Ridge National Laboratory

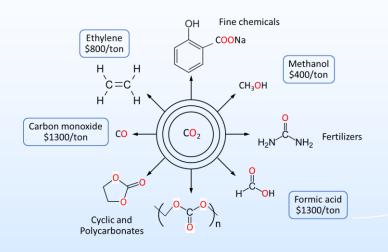
> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

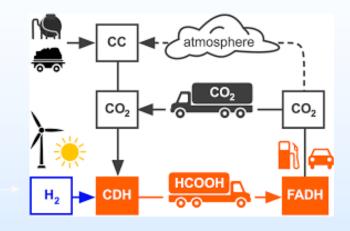

Project Overview

- Overall Project Objectives


- Advance the TRL through experimental and modeling to enhance the efficiencies while assessing the TEA/LCA of a dual functional catalytic porous polymer for simultaneous capture and conversion of CO₂ to value added chemicals (formic acid initially) under natural gas combined cycle (NGCC) application
- Funding \$1M/year total, 3 years
 - 10/1/2021 9/30/2025

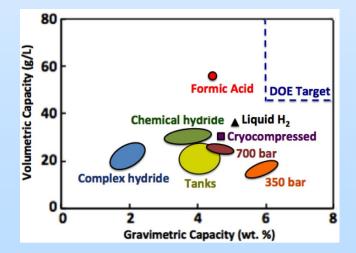
Team-ORNL and NETL



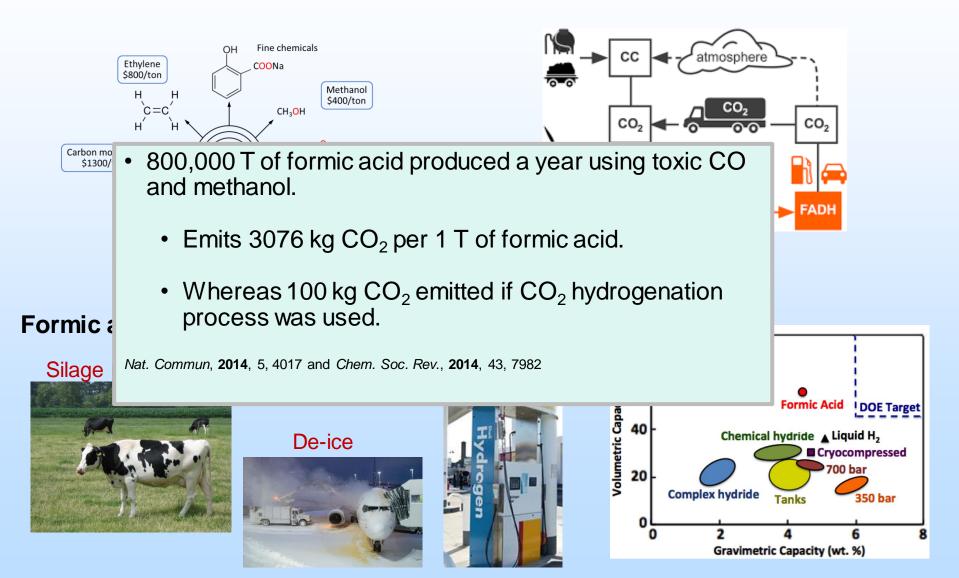

Design Considerations for CO₂ Reduction to Formic Acid

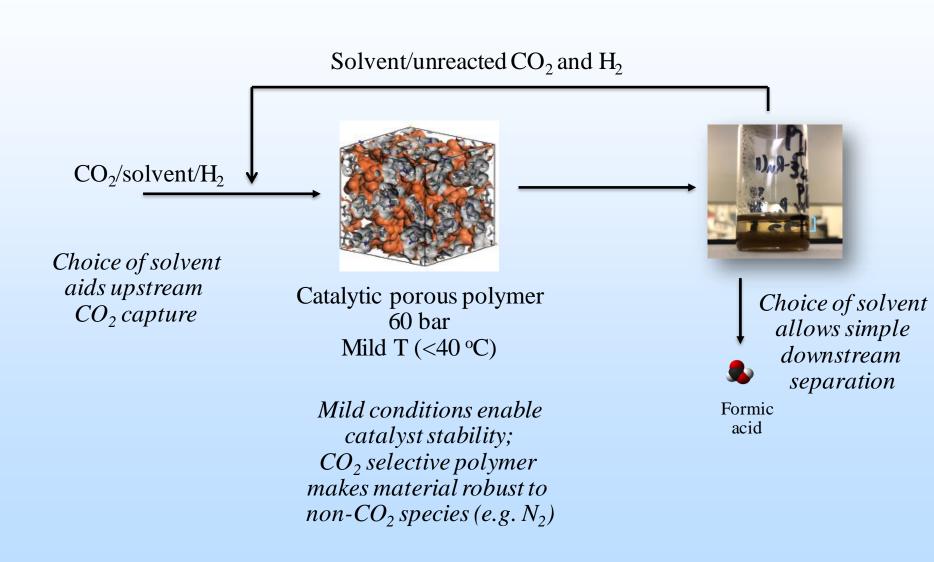
Pathway to Products: Chemical Targets

Potential to upgrade value of CO_2 by over 60 times (\$20 to \$1300/ton) into a zero-carbon chemical/fuel at an estimated 30% lower cost than existing fossil base synthesis routes.


Formic acid use

Silage preservation





Pathway to Products: Chemical Targets

Potential to upgrade value of CO_2 by over 60 times (\$20 to \$1300/ton) into a zero-carbon chemical/fuel at an estimated 30% lower cost than existing fossil base synthesis routes.

Hybrid Systems for a Holistic Approach

Project goals

3-year goals

• TRL 2 to 4

Year 1

- Synthesis scale up
- Determine catalyst efficiencies
 - Kinetic and thermo. models
- MFIX and CFD model of CCR-best design?

Year 2

- Batch to flow bed reactor; pellet forms
- Optimize CPAs
 - packed bed models to inform MFIX

Year 3

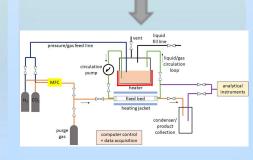
8

- Cost analysis
- Bench to
- demonstration

• 20 g to ca. 1 kg

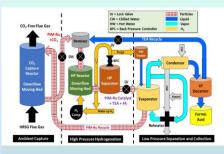
Polymer Catalyst

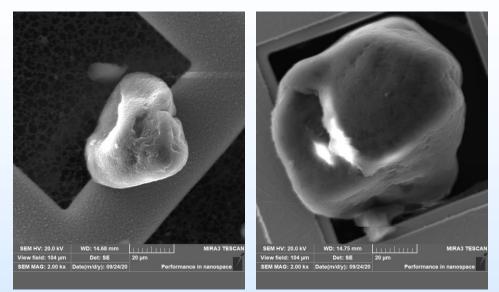
Scale up



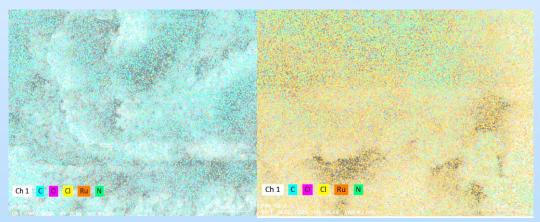
Batch to Flow

- Increase efficiency (decrease catalyst content/cheaper cat.)
- 50 mg working size to #grams



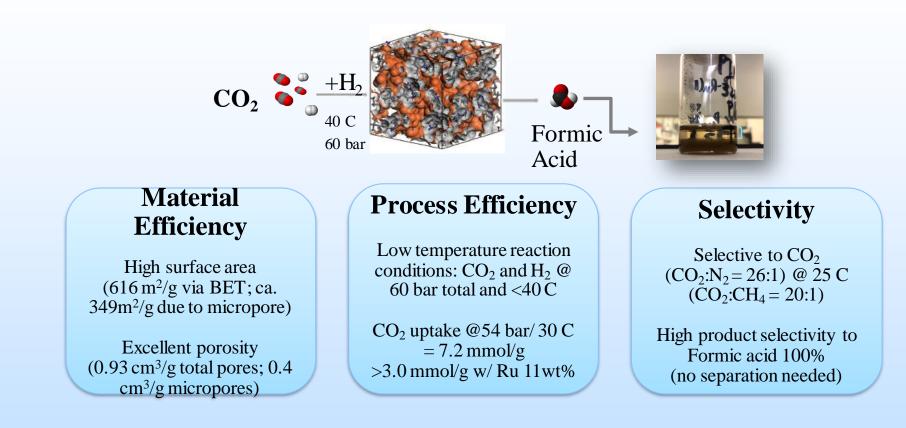

Process Scale up

Demonstrate


- bench flow reactor operation
- Process scale simulation
- TEA/LCA results and guidelines

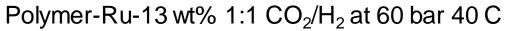
Development of Catalysts

SEM image of Polymer, and Polymer with Ru 11 wt%

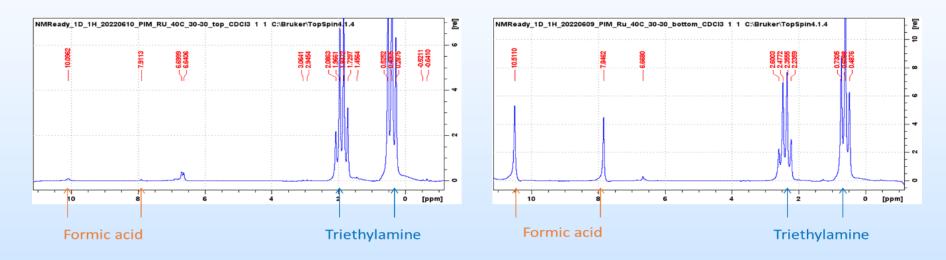

EDS image of Polymer and Polymer with Ru 11 wt%

- Developing porous polymer catalysts
 - Build rigidity into the structure to open porosity and accessibility of active sites
 - Scaled one to 1 kg
 - Understand the mechanism of catalyst
 - Sorption
 - Thermodynamics

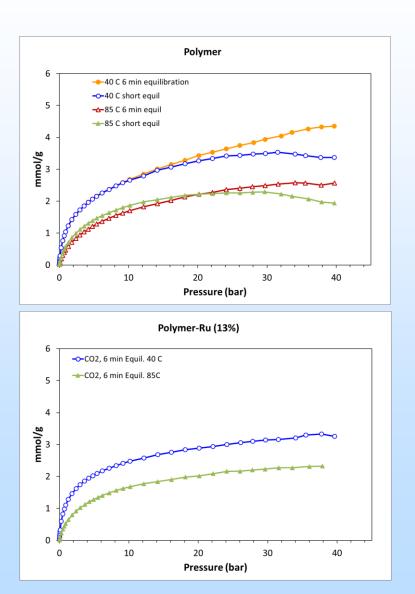
9

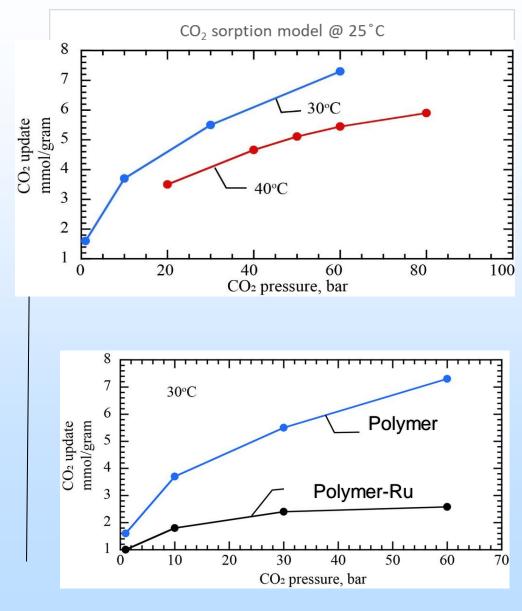

- Kinetics
- Potential need for pelletization when scaling up

Material Performance and Characterization

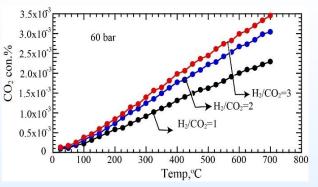


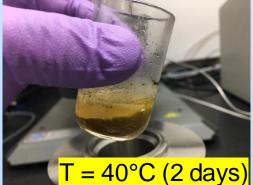
- Notable: pore size ranged 7-14 Angstrom; ideal for H₂ storage, and CO₂ adsorption
- Isoteric heats of adsorption ca. 28 kJ/mol for physisorption of CO₂


Separation of Product



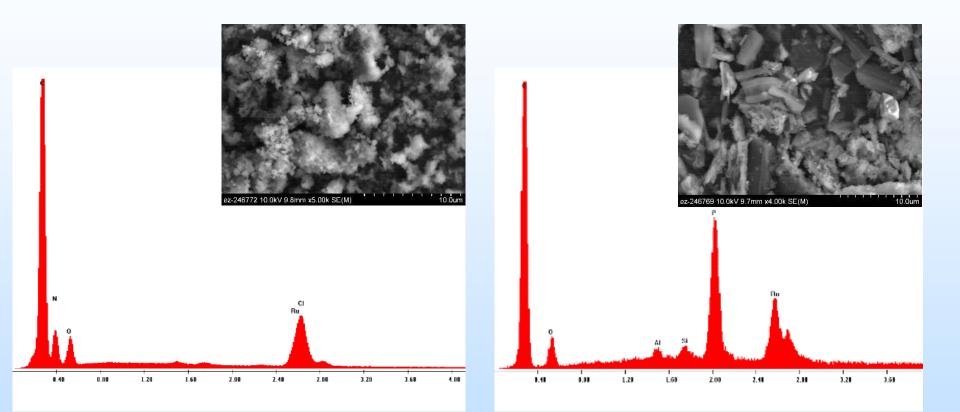
Bottom

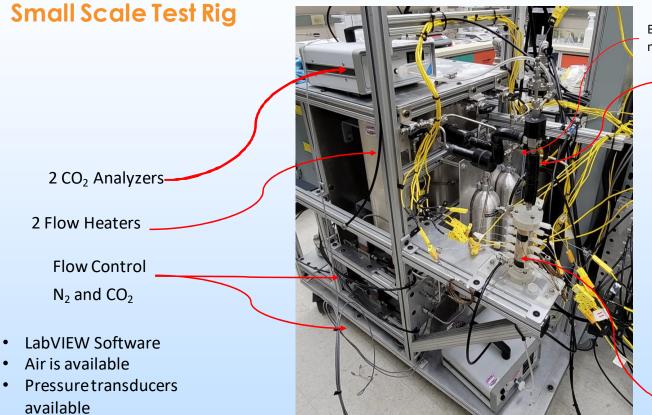

Predicting Performance of Materials



Catalytic Results (batch)

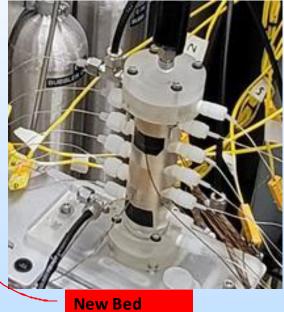
Catalyst	CO ₂ (bar)	H ₂ (bar)	Temp (C)	МеОН	TON*
Ru-13 wt%	30	30	40		400
	40	20	40		513
	20	40	40		295
	30	30	40	50 uL	584
	30	30	40	150 uL	0
	30	30	60		0
Ru-5 wt%	30	30	40		736
	40	20	40		654
	20	40	40		483
	30	30	40	50 uL	803



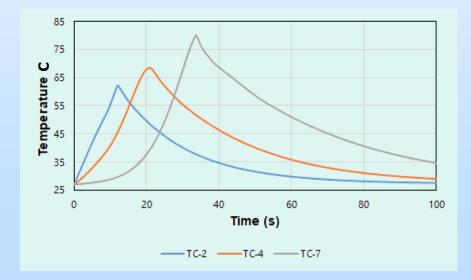

• 100 mg polymer catalyst: 11 mL triethylamine

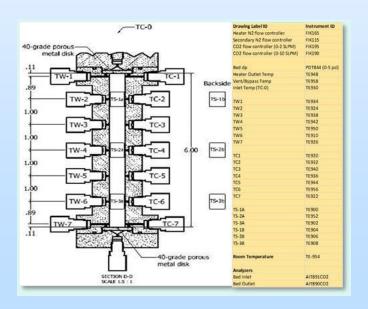
- TON = mol of reactant consumed/mol of catalyst
- Decreased loading decreases cost!
- Other metals? Solvents?

Polymer Catalyst Stability

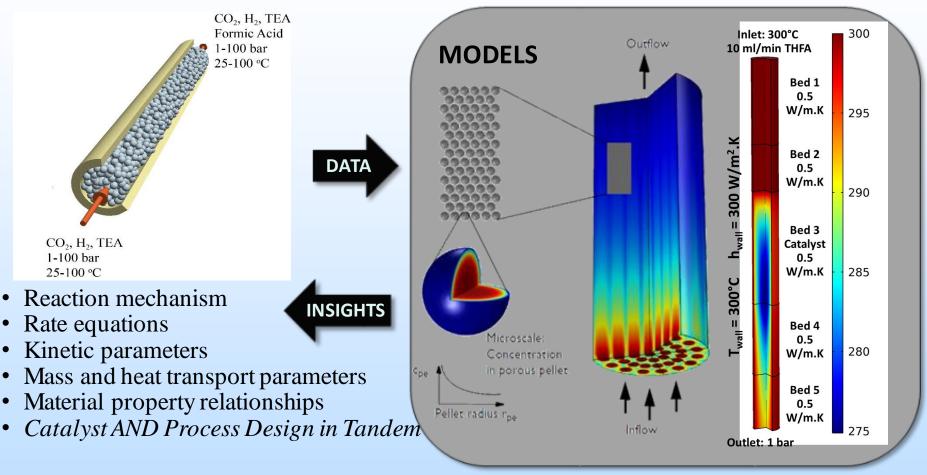


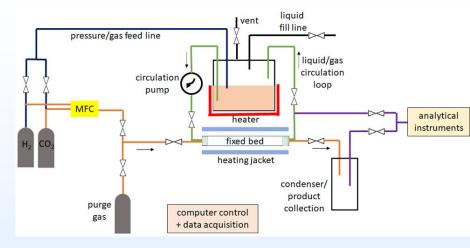
Lab Scale Fixed Bed Tests


Bubblers for humidity – we can measure, not really control


Plumbing for fast switching of flow conditions

Preliminary Simulation Results

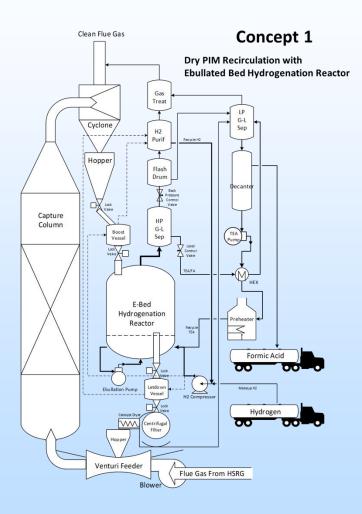

- Initial breakthrough around 10s and overall shape is captured CO2/N2 mix 1:9
- Simulation results can capture many of the trends observed experimentally
- However, heat dissipative effects that lead to the plateauing behavior are not captured and further tuning of the heat transfer model is required
- Preliminary testing showed that temperature profiles are sensitive to the thermal capacitance of the wall, but not to the external convective heat transfer coefficient



Plans for future testing/development/ commercialization

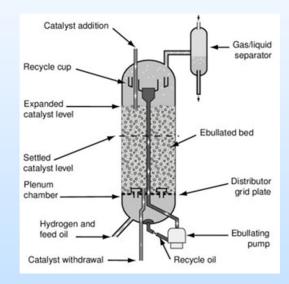
Measure and Optimization of CPAs for CO₂ Conversion

Flow Reactor



Features

- Gas-liquid mixer
- Max Pressure 100 bar
- Liquid-liquid separator
- Recirculation of solvent/gas
- Software control and analysis
- Chemical compatibility with products (formic acid)


Envisioned System

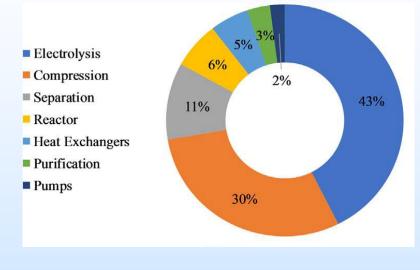
Ebullated-Bed Reactor

Heavy oil hydrocrackers:

- Lummus: LC-finer
- HRI: H-Oil

Major differences in our application:

- Our severity (T&P) is FAR lower
- Our solids addition rate is FAR higher
- Depending on gas rate, ebullation system might not be needed

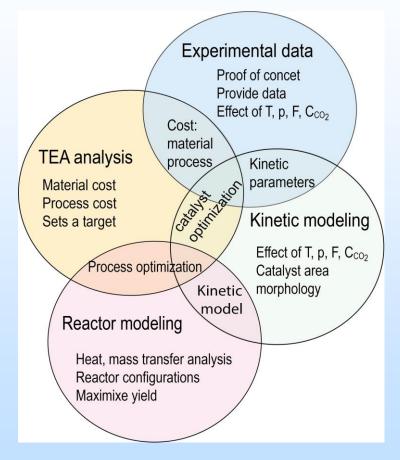


https://youtu.be/UD2fS1hKbUQ

Predicted CapEx for Formic Acid Synthesis Electrochem. Plant from CO₂

Important KPIs for hydrogenation to formic acid.

Indicator/measure		Value
Technical	TRL	3-5
	Typical operating temperature (°C)	60
	Typical operating pressure (bar)	100
	Typical overall CO2 conversion (%)	96
	Plant operational lifetime (yr)	20
Economic	Total CAPEX (£/t formic acid)	57.58
	Total OPEX (£/t formic acid)	1301
	Product price (£/t formic acid)	554.5
Environmental	Electricity usage (MWh/t formic acid)	4.1
	Net CO2 utilisation (t/t formic acid)	252.1


Int. J. Hydrog. Energy, 2016, 16444

Savings in fuel oil, steam and water equals reduced environmental impact and potential to utilize up to 21 Mt of CO_2 annually.

	CO ₂ hydrogenation	Conventional process
Electricity requirements (MWh/t formic acid)	4.07	1.55
Steam requirements (GJ/t formic acid)	10.03	19.25
Cooling water requirements (t H2O/t formic acid)	251.5	375.5
Process water requirements (t H ₂ O/t formic acid)	0.59	0.60

Outcomes Expected from Process Intensification Approach

- Versatile toolset for understanding the behavior and characterizing the performance of energy conversion processes
- Accelerate reactor development and reduce cost by using multiphase flow reactor modeling and simulation tools
- **Optimizes performance** for equipment and unit operations, enabling more throughput and less process downtime
- **Reduces design risks** when validated by predictive science-based calculations, lowering risk in obtaining return on investment

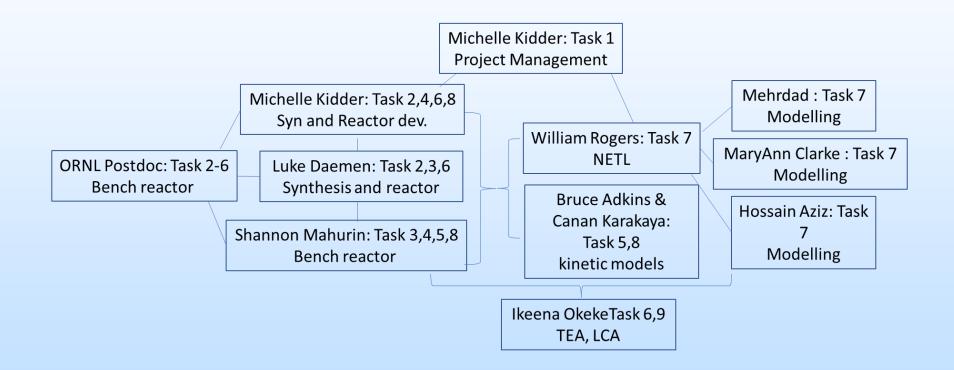
Summary Slide

- Scaling the polymer and catalyst has been reproducible ٠
 - 1 kg of polymer produced •
 - Decent carbon capacities of 4-7 mmol/g CO₂ at 40-54 bar; model ٠ validation
 - Batch reactions; <40 °C and >60 bar are current ideal conditions (batch) •
 - Reactions complete in 24 h; ٠
 - Pressure too low to continue and/or surface coated with product; packed bed/flow will over come this issue
 - Less catalyst increased TON
 - Selective for CO₂ (upstream); ease of separation (downstream) ٠
 - Pure product
- Initial packed bed testing and simulations ٠
- Future plan: ۲
 - Lower cost catalyst and optimal reaction conditions ٠
 - Packed bed experiments feed back with models; flow rate and resonance ullettime, pellet development 24
 - TEA/LCA ۲

Acknowledgements

Fossil Energy and Carbon Management

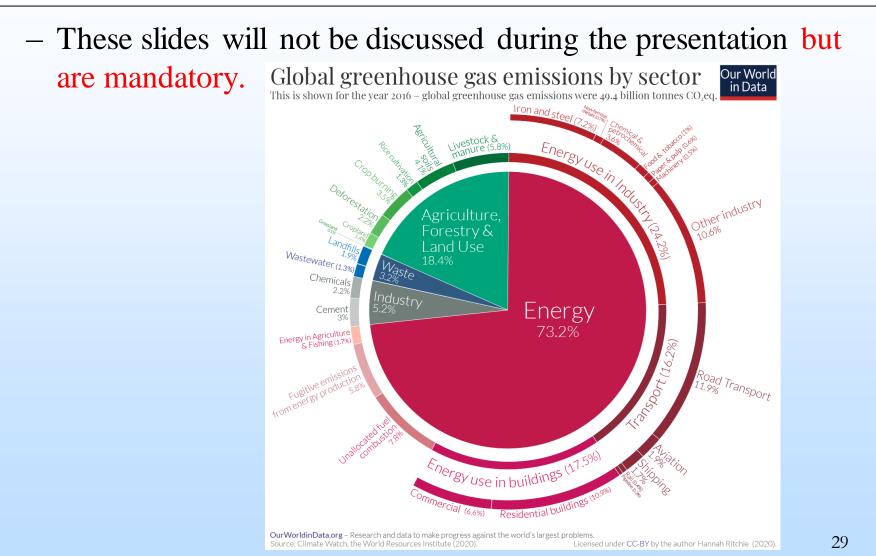
- Lei Hong (NETL, TM)
- Amishi Claros (FECM)
- Aaron Fuller (FECM)


CENTER FOR NANOPHASE MATERIALS SCIENCES

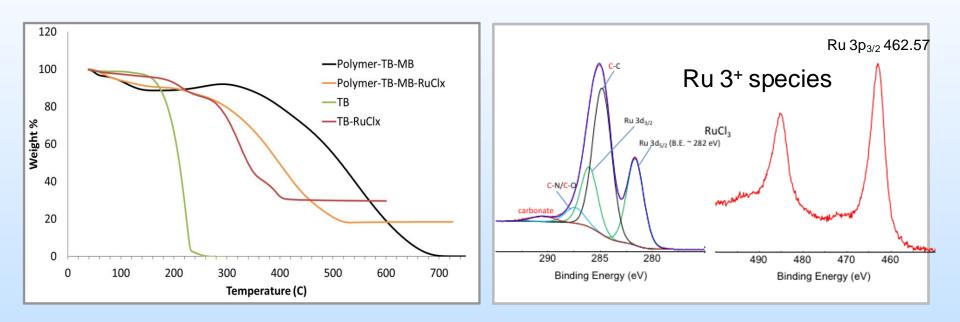
- Kunlun Hong
- Kinga Unocic

Organization Chart

Gantt Chart


												-		·		
					BP1 (9/01/21-9/30	<u> </u>		BP2 (1	0/01/22-09/				0/01/23-09/	1	
Organizations	Task #	Tasks and Subtasks (ST)	Start	End	Q1	Q2	Q3	Q4	Q5	Q6	Q7	-	Q9	Q10	Q11	Q12
			date	date	9/01/21-	1/01/22-		07/01/22-	10/01/21-	1/01/23-	04/01/23-		10/01/23-	1/01/24-	04/01/24-	07/01/24-
					12/31/21	03/31/22	06/30/22	09/30/22	12/31/22	03/31/23	06/30/23	09/30/23	12/31/23	03/31/24	06/30/24	09/30/24
		Project management and planning	9/1/2021	9/30/2024												
ORNL		Scale up Production of PIM-TB	9/1/2021	6/30/2022												
Daemen		ST 2.1. Custom design synthetic reactor	9/1/2021	3/31/2022												
Kidder		ST 2.2. Optimization of reaction scale from 20g to 100g	4/1/2022	6/30/2022												
		ST 2.3. Characterization and evaluation of PIMs	4/1/2022	6/30/2022												
ORNL	Task 3	Construct and Commission Dedicated Bench Scale Reactor	10/1/2021	6/30/2022												
Mahurin		ST 3.1. Design and purchase of reactor	10/1/2021	4/31/2022												
		ST 3.2. Testing of reactor flow and various particle size PIMs	2/1/2022	6/30/2022												
		ST 3.3. Analysis of Reaction Products with various PIMs and process conditions	4/1/2022	6/30/2022												
ORNL	Task 4	Measure and Optimization of Critical Performance Attributes (CPAs) for $\rm CO_2$ Capture	6/1/2022	3/31/2023												
Kidder		ST 4.1. Extract and complie key parameters to model performance	6/1/2022	3/31/2023												
Mahurin																
Adkins																
ORNL	Task 5	Measure and Optimization of Critical Performance Attributes (CPAs) for CO ₂ Conversion to Formic Acid v	7/1/2022	3/31/2024												
Mahurin		ST 5.1. Measure temp/pressure residence time kinetic envelope for the reaction	7/1/2022	12/31/2022												
Adkins		ST 5.2. Down selected parameters identified	12/31/2022	9/30/2023												
		ST 5.3. Develop and verify predictive models	4/1/2023	3/31/2024												
ORNL	Task 6	Optimization of PIM Design for capture and conversion	10/1/2022	6/30/2024												
Kidder		ST 6.1. Understand impact of particle structure on CP parameters	7/1/2022	6/30/2024												
Das		ST 6.2 Assess CAPEX and TEA	6/30/2023	6/30/2024												
NETL	Task 7	Computational modeling of CO ₂ capture step and particle-gas separation step to evaluate capture efficie	10/1/2021	9/30/2024												
Rogers		Described in FWP-PMP for NETL team														
ORNL	Task 8	Experimental measurement of CO ₂ reaction to formic acid at bench scale at process conditions	4/1/2023	9/30/2024											1	
Mahurin		ST 8.1. Data mining for kinetic models	4/1/2023	9/30/2024												
Kidder/Adkins		ST 8.2. Full capture and conversion cycle demonstrated on bench scale reactor	1/1/2024	9/30/2024												
ORNL	Task 9	Process Modeling and TEA/LCA	9/1/2021	9/30/2024												
Das		ST 9.1. Development of full-scale process models for capture and conversion	9/1/2021	12/1/2022												
		ST 9.2. Operation of process models to achieve DOE targets	10/1/2022	9/30/2023												
		ST 9.3. Economic Analysis and Life Cycle Analysis	4/1/2023													
		• •														

Natural Gas: Far Less Pollution


(tons per year per MWatt)

Pollutant	Coal	Natural Gas
CO ₂	6352	2348
CO ₂ with CCS capture	837	309
Carbon Monoxide	4.62	1.64
Nitrous Oxide (NO _x)	1.85	0.15
Sulfur Dioxide (SO ₂)	3.08	0.02
Mercury	2.0 ounces	none

Appendix

Thermal stability

- Material is thermally stable in air up to 300°C, meets demands for applications in CO₂ uptake and heterogenous catalyst
- Recycle of catalyst maintains integrity of Ru 3⁺ species.

Tasks

- 1. Scale up of Polymer
- 2. Construct and Commission Bench Scale Reactor
- 3. Measure, Optimize Critical Performance Attributes (CPA) of CO₂ Capture and Conversion
- 4. Optimize Catalyst design for capture and conversion
- 5. Comp. Modeling of capture, separation, capture efficiency and fluidization properties
- 6. Experimental measurement of product formation at bench scale at process conditions
- 7. Assess feasibility TEA/LCA