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Motivation

Traditional carbon capture, separation, compression, and sorbent regeneration incur 

energy penalties and increase cost. 

• Combining these separate steps into an “all-in-one” process would reduce the energy 

requirements, complexity, and cost of CO2 utilization strategies. 
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Objective

Integrate CO2 selective membranes into electrolyzer device to capture and 
convert dilute CO2 into formic acid (formate). 

Team Expertise: 
• Electrochemical conversion of CO2 into formate at 

industrially-relevant current density. 

• CO2-selective membranes for separation from dilute streams. 

• LCA and TEA. 

Challenges :
• Incorporating CO2-selective polymers into electrode 

architectures and optimizing the interfaces. 

• Improving bipolar membrane (BPM) fabrication and 
lamination strategies to improve performance/durability. 

• Developing accelerated degradation and variable load testing 
protocols.
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Task Structure and PIs

Task 2: LCA/TEA and process optimization.  

• Timothy.Skone@netl.doe.gov(LCA) & Gregory.Hackett@netl.doe.gov(TEA).

Task 3: Membrane synthesis and evaluation.  
• David.Hopkinson@netl.doe.gov (contributions from INL and Univ. Pitt.)

Task 4: Membrane/electrode interfacing. 
• David.Hopkinson@netl.doe.gov & Douglas.Kauffman@netl.doe.gov

Task 5: Cathode optimization. 

• Douglas.Kauffman@netl.doe.gov

Task 6: Electrochemical evaluation.  

• Douglas.Kauffman@netl.doe.gov

Task 7: 25cm2 scale electrolyzer validation, component-level diagnostics, and BPM. 

• Kenneth.Neyerlin@nrel.gov & Brian.Pivovar@nrel.gov
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Key Milestones
• BP1. 

• Milestone M2.1 (BP1): Complete initial LCA/TEA screening studies (on track).

• Milestone M3 (BP1): Down select at least one formulation for incorporation into GDE  (completed).

• Milestone M4.1 (Go/No-Go; BP1): Demonstrate membrane/GDE assembly with CO2/N2 selectivity ≥ 10 and a CO2 flux ≥ 5 x 10-4

mol/hr/cm2  (completed).

• BP2. 

• Milestone M2.2 (BP2): Complete process-level system optimization study.

• Milestone M4.2 (BP2): Increase membrane CO2 flux to ≥ 0.005 molCO2/hr/cm2 with CO2/N2 selectivity ≥ 10.

• Milestone M6 (Go/No-Go; BP2): Demonstrate 5-cm2 electrolyzer performance of polymer-incorporated GDE that operates with > 
50% FE and > 100 mA/cm2 at < 20% CO2 concentration.

• BP3.

• Milestone M4.3 (BP3): Complete final LCA/TEA using optimized systems design and experimental input.

• Milestone M4.3 (BP3): Increase membrane CO2 flux to ≥ 0.01 molCO2/hr/cm2 with CO2/N2 selectivity ≥ 10.

• Milestone M7 (Go/No-Go; BP3): Demonstrate 25-cm2 electrolyzer performance of polymer-incorporated GDE with ≥ 250 mA/cm2

and ≥ 70% formate FE over 24-hr operation with ≤ 20% CO2 inlet streams.
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Design, Process, and Cost Engineering at NETL

Background: LCA, TEA, and Systems Opt.

DOE-FECM Program Goals and Objectives
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• NETL has conducted a wide variety of TEA of power 
generating systems in addition to carbon utilization 
technologies to draw comparison from, including 
the following:

• Technology Expertise:

Cost and Performance Baseline and Other TEA Examples

Background: LCA, TEA, and Systems Opt.

• Combustion Systems (natural gas, biomass, and 
coal)

• Gasification Systems (dry and slurry feed, coal 
and biomass)

• Oxy-combustion Systems (atmospheric and 
elevated pressure)

• Chemical Looping                      

• Solid Oxide Fuel Cells/Solid Oxide Electrolysis 
Cells

• Fuels and Chemicals(e.g., H2, NH3, methanol, 
etc.) Production from Fossil Fuels

• Supercritical CO2 Power Cycles (direct and 
indirect)

• Process Water Treatment/ Zero Liquid Discharge 
Systems

• Bulk Energy Storage

• CO2 Capture Systems (solvent, sorbent, membrane, 
cryogenic)

• Direct Air Capture

• CO2 Purification and Compression

• Air Separation Units (cryogenic, ion transport membrane)

• Hydrogen Recovery (membranes, sorbents)

• Combustion Turbines

• Steam Turbines (subcritical through adv. Ultra-
supercritical steam conditions)

• CO2 Utilization Technologies (EOR, Cements, Algal, EC, 
Microwave)

• Direct Power Extraction/ Magnetohydrodynamics

NETL Bituminous Baseline 
Report LinkNETL Energy Analysis Library Link
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Rigorous modeling capabilities that enable design and 
optimization of  complex, interacting technologies and systems

Core capabilities
• Libraries of  customizable unit models enabling rapid construction of  

optimizable process flowsheets

• Simultaneous optimization of  process design and operation

• Advanced machine learning/surrogate modeling

• Rigorous uncertainty quantification/propagation enabling robust optimization 
with performance guarantees

• Multi-scale modeling from materials to energy market scales

Enabling several ongoing collaborative projects

• ARPA-E DIFFERENTIATE (natural gas solid oxide fuel cell systems)

• National Alliance for Water Association (NAWI)

• Tri-LAB/GMI-DISPATCHES (hybrid, multi-input, multi-output energy 
systems)

• ARPA-E FLECCS (flexible carbon capture)

• EMRE CRADA (direct air capture)

Background: IDAES Integrated Platform
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Open Source: https://github.com/IDAES/idaes-pse

Lee, et al., The IDAES Process Modeling Framework and 

Model Library – Flexibility for Process Simulation and 

Optimization, 2021, Journal of Advanced Manufacturing and 

Processing 
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Task 2: TEA/LCA

Approach
• Compare performance, cost, and environmental impact of integrated 

capture/electrochemical-conversion system against three base cases
• 1) “business as usual” production with unabated carbon emissions

• 2) “business as usual” production with solvent capture and storage

• 3) separate CO2 capture and electrochemical CO2 conversion

Sensitivity Analysis for Levelized Cost of Production (LCOP)
• Membrane CO2 Flux

• CO2 Electrolyzer Faradaic Efficiency, Current Density, Voltage, Single-Pass 
Conversion

Progress
• Design Basis / Analysis Plan development completed.

• Milestone M2.1 (09/30/2022; on track): Complete initial LCA/TEA screening.
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Tasks 3 & 4: Membrane/Electrode Interfacing
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Milestone M2.1 and M3 (09/30/2022): Completed

Demonstrated polymer/GDE assembly with

CO2/N2 selectivity ≥ 10 and a CO2 flux ≥ 5 x 10-4

mol/hour/cm2. 

Pure-gas permeation through membrane and GDE

Pressure drop across the membrane (2022#4) 
are 8 psi in both cases.

Tasks 3 & 4: Gas permeation of membrane/GDE assemblies

CO2-selective 
membranes

CO2 flux @ 0.5 bar 
pressure drop 

(mol/hour/cm2)

CO2/N2

selectivity

2022#04 0.019 >12

2022#08 0.025 13

2022#12 0.024 12
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CO2 N2

** CO2 flux sufficient for ~350 mA/cm2
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Task 5: Gas Diffusion Electrode Optimization
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• Optimize catalyst ink on GDE
• NETL-developed, doped-SnO2 cathode catalyst. 
• Evaluate ratio of catalyst, carbon, Nafion binder, and influence of hydrophobic MPL. 

• Milestone M5 completed. Optimize cathode catalyst and MPL layer for formate production.

GDE Optimization Catalyst Performance 
(pure CO2)

Unpublished results; provisional patent application submitted & manuscript in preparation. 

FE vs. CO2 Concentration

• Optimized loading, Toray PTFE 
content, incorporation of MPL, 
and catalyst ink to maximize 
performance.

• Catalyst performance in dilute 
CO2 (no separation membrane)

• Initial tests with interfaced 
GDE/CO2 membrane

100 mA/cm2



Task 6: Electrochemical Evaluation
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• This task will evaluate the electrochemical performance of electrodes 
containing CO2-selective polymer layers in 5 cm2 electrolyzers.  

• Scheduled to begin in BP2 (Oct. 2022). 

• Milestone M6 (Go/No-Go; BP2): Demonstrate 5cm2 electrolyzer 

performance of polymer-incorporated GDE that operates with > 50% FE 

and > 100 mA/cm2 at < 20% CO2 concentration.

• Current results without CO2-selective membrane: 

• ~80% FE at 100 mA/cm2 in 25% CO2

• ~43% FE at 100 mA/cm2 in 15% CO2

• Inclusion of CO2 selective membranes will allow operation at higher 

current density and lower CO2 concentrations!



Task 7: Scaling and BPM Development
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NREL had developed 25cm2 electrolyzer device hardware that can sustain
500 mA/cm2 and high faradaic efficiency. 
• Substantial reductions in operating voltage are possible by optimizing the bipolar 

membrane that separates the cathode and anode, as well as specific component 
design (e.g. gas/catholyte flow-field design, gasketing, etc.).

Efforts to improve Bipolar membranes. 
• Coaxial spun BPMs are advantageous over typical 2D 

BPM interfaces with a higher surface area for 
transport and an interpenetrating junction 
architecture to overcome delamination.

• Initial progress in tailoring the BMP synthetic 
conditions has reduced charge transfer resistance 
(Rct) and should lower operating voltages.  



Summarized Progress and path forward.

15

Budget Period 1. 
• Successfully integrated a CO2-selective polymer membrane onto a gas diffusion electrode (GDE). 

• Optimized catalyst layer and GDE construction. 

• Finishing initial /LCA to estimate cost savings and carbon footprint reductions.  

Next Steps (Budget period 2). 
• Demonstrate electrochemical performance of integrated membrane/GDE in dilute CO2 streams. 

• > 50% FE and > 100 mA/cm2 at < 20% CO2 concentration. 

• Optimize BPM synthesis. 

• Continue to improve CO2 flux through membrane.

• Process optimization efforts for final LCA/TEA. 

Final Deliverables (BP3). 
• Demonstrate 24-hour electrochemical performance in 25cm2 electrolyzer at  ≥250 mA/cm2 and ≥70% formate FE with 

≤20% CO2 inlet streams

• Final comprehensive LCA/TEA report with experimental data and optimized system design. 



Questions or Comments? 
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Douglas.Kauffman@NETL.DOE.GOV

Thank you for your attention!

Acknowledgement: This work was performed in support of the U.S. Department of Energy’s Fossil Energy and Carbon Management’s Carbon
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Synthesis of 
Value-Added 
Organic 
Products

Units
Measured/Current 

Performance
Projected/Target 

Performance

Synthesis Pathway Steps1

Step 1 (based on CO2) mol -1 CO2 + 2e- + 2H+
→ HCOOH

Step 2 mol -1 Balanced chemical equation

Step n mol -1 Balanced chemical equation

Sourceof external intermediate 1 Renewable energy (electrons)

Sourceof external intermediate 2 (e.g., natural gas, oil, renewable energy, etc)

Source of external intermediate n (e.g., natural gas, oil, renewable energy, etc)

Reaction Thermodynamics2,3

Reaction4 Electrochemical; formal potential E0 = -0.12V vs. RHE)

DHo
Rxn KJ/mol 378.6  (from: 10.1021/acs.chemrev.8b00705)

DGo

Rxn KJ/mol 350.9  (from: 10.1021/acs.chemrev.8b00705)

Conditions (range) (range)

CO2 Source5 25-100% <25%

Catalyst6 Doped SnO2 Doped SnO2

Pressure bar 1 1

CO2 PartialPressure bar 0.25-1 <0.25

Temperature oC 20 20

Performance (range) (minimum)

Nominal Residence Time7 sec seconds TBD

Selectivity to DesiredProduct8 % 60-90 >90

Product Composition9 (range) (optimal)

Desired Product mol% 30% single-pass conversion

TBD; must optimize single-pass 

conversion and flow rates to sustain 

selective CO2 conversion without 

HER. 

Desirable Co-Products mol%

“ “ mol%

Unwanted By-Products mol% <10 0

“ “ mol%

Grand Total mol% 40% TBD

Technology 
Performance 
Data

Electrochemical 
reduction of CO2

into formate / 
formic acid


