An overview of NETL's in-house CO₂ conversion efforts

FWP-1022426 (Carbon Conversion FWP)

Douglas Kauffman Research Chemist; NETL/DOE-FECM

FWP-1022426 (Carbon Conversion FWP)

- The FWP supports multiple in-house efforts.
- Catalytic conversion of CO₂ to industrially-relevant chemicals (Douglas.Kauffman@netl.doe.gov)
 - Electrocatalyst development, electrolyzer validation, and computational modeling.
 - Microwave-assisted catalysis.
 - Surface science studies.
- Biological conversion of CO₂ and CO₂-derived intermediates (<u>Djuna.Gulliver@netl.doe.gov</u>)
- Strategic systems analysis and engineering (<u>Gregory.Hackett@netl.doe.gov</u> & <u>Timothy.Skone@netl.doe.gov</u>)
 - TEA/LCA and guidance documents for in-house and extramural projects.
- Scale-up efforts for microwave-assisted CO₂ catalysis (<u>Christina.Wildfire@netl.doe.gov</u>).
- Microwave-assisted reactive CO₂ capture and conversion (<u>Douglas.Kauffman@netl.doe.gov</u>)
- Conversion of CO₂ into polycarbonates (<u>Daniel.Haynes@netl.doe.gov</u>)

Catalytic CO₂ Conversion

Efforts Span Technology Readiness Levels (TRLs) 1-3/4

Materials Design and Advanced Characterization Experiment and Theory to Understand and Control Chemistry

Lab-scale validation in prototype reactors, LCA/TEA

Fe O H Au O₂) 2 H₂O

Identify which parts make the catalyst "work" to optimize performance

Fundamental Understanding

Lab-Scale Validation

Recent efforts have focused on Sn-based catalysts for formate production.

Key approaches include:

- 1. Controlling 3D structure to increase electrochemically active surface area.
- 2. Controlling composition (doping) to reduce overpotential.

High Surface Area SnO₂

Scientific Reports, 2022, volume 12, Article number: 8420 (article link) & US patent appl. # 17/668061

Recent efforts have focused on Sn-based catalysts for formate production.

Key approaches include:

- 1. Controlling 3D structure to increase electrochemically active surface area.
- 2. Controlling composition (doping) to reduce overpotential.

Unpublished results; provisional patent application submitted & manuscript in preparation.

Recent efforts have focused on Sn-based catalysts for formate production.

Key approaches include:

- 1. Controlling 3D structure to increase electrochemically active surface area.
- 2. Controlling composition (doping) to reduce overpotential.

Unpublished results; provisional patent application submitted & manuscript in preparation.

8

Electrocatalyst Development

Recent efforts have focused on Sn-based catalysts for formate production.

Key approaches include:

- Controlling 3D structure to increase electrochemically active surface area.
- Controlling composition (doping) to reduce overpotential. 2.

Electrolyzer Performance

- Currently comparing longterm performance.
- Post-reaction characterization to quantify morphology/surface changes & confirm dopant retention.
- TEA/LCA

Loading and size-dependent OER activity

Surface Science Studies.

Key approaches include:

ENERGY

- 1. Probing active sites in PGM-free anode OER catalysts (Fe_2O_3 and $NiFeO_x$).
- 2. Mapping the size-dependent CO₂RR vs HER selectivity of Ag nanocatalysts.

Experiment + DFT

Structure/Property Relationship

Surface Science Studies.

Key approaches include:

- 1. Probing active sites in PGM-free anode OER catalysts (Fe₂O₃ and NiFeO_x).
- 2. Mapping the size-dependent CO₂RR vs HER selectivity of Ag nanocatalysts.

Experimental Data for Ag Catalysts

DFT, Transition State Theory, and Microkinetic Modeling

Microwave Catalyst Development

Dry Reforming of Methane (DRM) converts $CO_2 + CH_4$ to syngas: $CO_2 + CH_4 \rightarrow 2CO + 2H_2$

- High temps required for good kinetics and minimal coking (>800 C).
- Economically unappealing with traditional thermal reactors.

Microwave reactors are electrically driven and selectively heat the catalyst bed to ~1000C.

- Selectively heats the catalyst bed, not entire reactor volume.
- Rapid on/off cycling to reaction temperatures.
- Excellent energy efficiency.

Catalyst design considerations:

- Oxides must be conductive and thermal stability.
- Retain MW-absorbing active oxide phase and sustain small metallic nanoparticle active sites.
- B-site dopants control stability and overall catalytic activity.

Microwave Catalyst Development

Create bimetallic active sites

- Probed large composition space of bi-doped LSC-X/Y (~30 formulations).
- Sustained multi-day, 80-90% single-pass conversion of pure gases at 1 LPM with several start/stop cycles (7 g catalyst powder).
 - WHSV: ~10 $L_{gas}/g_{catalyst}/hr$
 - GHSV: ~20,000 L_{gas}/L_{catalyst}/hr
- Kg-scale synthesis achieved, creating *industrial form* for pre-pilot scale.
- Tuning product distribution to achieve 2:1 H₂:CO ratio for MeOH synthesis.

CO Production Energy Requirements:

- MW: ~3 kWh/kg_{co}
- Echem: 5-7 kWh/kg_{co}

H₂ Production Energy Requirements:

- MW: ~48 kWh/kg_{H2}
- Echem: 46-70 kWh/kg_{H2}
- ★ 5 times *lower* energy than thermally driven reaction!
- ★ TEA: microwave syngas to MeOH at \$1-2/gallon with 2:1 H₂:CO ratio

Electrochemistry: Thuy-Duong Nguyen-Phan & James Ellis

Microwave Catalysis: Chris Marin, Biswanath Dutta, and Christina Wildfire.

Computational Electrochemistry: Dominic Alfonso, Dan Sorescu, Anantha Nagarajan (U. Pitt), and Prof. Giannis Mpourmpakis (U. Pitt).

Applied Surface Science Studies: Xingyi Deng and Junseok Lee

Keep an eye out for open positions through NETL's RSS contractor: Leidos & Battelle!

Thank you for your attention!

Douglas.Kauffman@NETL.DOE.GOV

Acknowledgement: This work was performed in support of the U.S. Department of Energy's Fossil Energy and Carbon Management's Carbon Conversion Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Carbon Conversion FWP.

Disclaimer: This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Synthesis of Value-Added Organic Products

Technology Performance Data

Electrochemical reduction of CO₂ into formate / formic acid

	Units	Measured/Current Performance	Projected/Target Performance
Synthesis Pathway Steps ¹			
Step 1 (based on CO ₂)	mol ⁻¹	$CO_2 + 2e - + 2H^+ \rightarrow HCOOH$	
Step 2	mol ⁻¹	Balanced chemical equation	
Step n	mol ⁻¹	Balanced chemical equation	
Source of external intermediate 1		Renewable energy (electrons)	
Source of external intermediate 2		(e.g., natural gas, oil, renewable energy, etc)	
Source of external intermediate n		(e.g., natural gas, oil, renewable energy, etc)	
Reaction Thermodynamics ^{2,3}			
Reaction ⁴		Electrochemical; formal potential $E0 = -0.12V vs. RHE$)	
ΔH^{o}_{Rxn}	KJ/mol	378.6 (from: 10.1021/acs.chemrev.8b00705)	
ΔG^{o}_{Rxn}	KJ/mol	350.9 (from: 10.1021/acs.chemrev.8b00705)	
Conditions		(range)	(range)
CO ₂ Source ⁵		25-100%	K25%
Catalyst ⁶	1	Doped SnO ₂	Doped SnO ₂
Pressure	bar	1	
CO ₂ Partial Pressure	bar	0.25-1	<0.25
Temperature	٥C	20	20
Performance		(range)	(minimum)
Nominal Residence Time ⁷	sec	seconds	TBD
Selectivity to Desired Product ⁸	%	60-90	⊳90 I
Product Composition ⁹		(range)	(optimal)
Desired Product	mol%	30% single-pass conversion	TBD; must optimize single-pass conversion and flow rates to sustain selective CO ₂ conversion without HER.
Desirable Co-Products	mol%		
<i>u u</i>	mol%		
Unwanted By-Products	mol%	<10	ρ
<i>u u</i>	mol%		
Grand Total	mol%	40%	TBD

Technology Performance Data

Microwave dry reforming

	Units	Measured/Current Performance	Projected/Target Performance
Synthesis Pathway Steps ¹			
Step 1 (based on CO ₂)	mol⁻¹	$CO_2 + CH_4 \rightarrow 2CO + 2H_2$	
Step 2	mol ⁻¹		
Step n	mol⁻¹		
Source of external intermediate 1		Renewable energy (electrons)	
Source of external intermediate 2			
Source of external intermediate n			
Reaction Thermodynamics ^{2,3}			
Reaction ⁴		Microwave	
ΔH^{o}_{Rxn}	KJ/mol	247 (from: https://doi.org/10.1002/ente.202100106)	
ΔG°_{Rxn}	KJ/mol	170.5	
Conditions		(range)	(range)
CO ₂ Source ⁵		Concentrated $CO_2 + CH_4$ (1:1)	Concentrated $CO_2 + CH_4$ (1:1)
Catalyst ⁶		NETL-developed conductive oxide (PGM-free)	NETL-developed conductive oxide (PGM-free)
Pressure	bar	1	կ
CO ₂ Partial Pressure	bar	0.5	0.5
Temperature	٥C	800-900C (localized MW heating)	800-900C (localized MW heating)
Performance		(range)	l (minimum)
Nominal Residence Time ⁷	sec	seconds	TBD
Selectivity to Desired Product ⁸	%	80-90	⊳90
Product Composition ⁹	1:1 syngas	80-90%	>90%
Desired Product	mol%	80-90% single-pass conversion	>90% single-pass conversion
Desirable Co-Products	mol%		1
и и	mol%		
Unwanted By-Products	mol%	Coke (solid carbon); very minor	none
u u	mol%	Unreacted $CO_2 + CH_4$; 10-20%; minor solid carbon (coke).	
Grand Total	mol%	80-90%	>90%