Electrochemical Production of Highly Valuable Carbon Nanotubes from Flue-Gas Sourced CO₂

DE-FE-0031913

Dr. Anna Douglas | SkyNano

U.S. Department of Energy

NATIONAL RENEWABLE ENERGY LABORATORY

National Energy Technology Laboratory Carbon Management Project Review Meeting August 15-19. 2022

 Sky

PROJECT GOALS

CO₂ capture from NGCC flue gas

Market-ready production of MWCNTs from TVA flue gas-derived CO₂ End of project scale: 0.2kg_{CNT}/hr 80% CO₂ capture; 80% CE; <30nm diameter; ID/IG<1 SkyNano

TEA + LCA in collaboration with NREL– MWCNT MSP goal 80-90% less than today's market

Total project budget \$2.5M Timeline 10/01/2020-09/30/2023 NETL PM Natalie lannacchione

ELECTROLYTIC CO₂ REDUCTION CHEMISTRY

J. Ren, et. al. J. Phys. Chem. C. 2015 (119)

CNTS: HIGH CO₂ VALUE

Species	#e-	Pathway	US Market Price (\$/kg)a	\$/e- req. (x103)b	Global Production (MMT/y)	CO2ec (MMT CO2/y)
Carbon Monoxide	2	EC, TC	0.18	2.6	150	236
Formic Acid	2	EC. TC	0.66d	15.2	0.6	0.60
Carbon Nanotubes	4	EC	110.2	331.0	0.003e	0.01
Methanol	6	EC, TC	0.35	1.9	91.8f	126
Methaneg	8	EC, TC, BC	0.15	0.3	2336	6410
Acetic Acid	8	EC, BC	0.61	4.6	14.3	21
Ethylene Glycol	10	EC	0.93	5.8	28.3h	40
Acetaldehyde	10	EC	1.42	6.3	0.9e	1.8
Dimethyl Ether	12	TC	0.65i	2.5	3.7	7.1
Ethanol	12	EC, TC, BC	0.52	2.0	89.6	171
Ethylene	12	EC, TC, BC	0.71	1.7	156	490
Acetone	16	EC	1.00	3.4	6.8j	15
Propionaldehyde	16	EC	1.6k	5.8	0.61	1.4
Propylene	18	TC	1.07	2.5	117	367
1-Propanol	18	EC	1.43	4.8	0.2	0.4
Isopropanol	18	BC	1.07	3.6	1.9f	4.2

SkyNano targeting carbon black additive-based markets, representing a 8.1 MMT/y market

SKYNANO TECHNOLOGY ADVANCEMENTS

Engineered anode w/ surface passivity that enables catalyst on cathode to be active

SkyNano

Utilization of electrochemical controls such as current pulsing to modulate MWCNT product structure

Douglas, A. *et. al. Carbon*, 2017, 116, 572-578 Douglas, A. *et. al. ACS Appl. Mater. Int.*, 2018, 10 (22), 19010-19018

TECHNICAL APPROACH OVERVIEW

- Task 2 + 3 focused on closed e-cell demonstrating CNT growth from CO2 gas inputs
 - □ pure CO2

SkyNano

- □ synthetic flue gas
- TVA-provided flue gas
- Task 4 focused on scaling e-cell to 0.05kg_{CNT}/hr + system of 4 cells totaling 0.2kg_{CNT}/hr
- Task 5 focused on integrating all systems required for fully continuous operation

TASK 2: DESIGN

TASK 2: BUILD + VERIFY

Things we noted:

- 1. Li2CO3 was splashing onto the lid and top part of electrochemical feedthroughs and required a cleaning procedure to be developed and executed between electrolysis experiments
- 2. Observation of carbon growth on front and back side of cathode, indicating some e-fields were reaching back of cathode and causing carbon growth
- 3. Al2O3 crucible was experiencing cracking and leaking Li2CO3 unable to determine failure mechanism but switched to metal crucible

TASK 2: GAS FLOW RESULTS FROM 100% CO₂

$$CO_2 Conversion (\%) = \frac{moles CO_2 Uptaken}{Th.moles CNTs (80\% C.E)} \times 100$$

TASK 2: UTILIZING SYNTHETIC FLUE GAS

- Selected flue gas blend based on feedback from TVA's historian data on output concentrations of CO2, O2, & N2 from natural gas combined cycle power plants
- 83% N₂, 12% O₂, 5% CO₂, and 12 ppm NO
- High CO2 uptake (93%) + MWCNT product with diameters

TASK 2: COLLECTING REAL FLUE GAS

TASK 2: COLLECTING REAL FLUE GAS

TASK 2: UTILIZING TVA FLUE GAS

TASK 2: MILESTONE E

Gas Composition	Average CNT-	ID/IG	Coulombic	CO2	Carbon
	Diameter Range	Ratio	Efficiency	Utilization	Conversion
	(nm)		(%)	(%)	Percent
					(CO ₂ to
					CNT)
Pure CO ₂	~ 30 nm	N/A	74.1	44.4	83.5
Airgas Synthetic Flue	~ 30 nm	N/A	89.95	93.19	91.13
Gas					
TVA John Sevier	~ 26 nm	~1	87.88	87.91	87.89
Combined Cycle					
(JSCC) Unit 2 Flue					
Gas					

TASK 3: IMPROVED CO2 UPTAKE PROTOCOL

Varying CO2 uptake measurements previously lead to questions about the effects of exposure to atmospheric CO2 or possibly Li2O crystals getting stuck within the carbon cake on the cathode surface.

While we awaited for parts to arrive for new E-cell, we devised a set of experiments to elucidate the effects of various Li2O molar concentrations on CO2 uptake kinetics.

Starting with known concentrations of Li2O from powdered precursors in Li2CO3 melts, we were able to measure uptake over time for 3 different starting concentrations.

TASK 4: SCALING THE DESIGN

TASK 4: BUILDING THE CELLS

TASK 4: CHARACTERIZING CARBON PRODUCT

BP2.0 Electrochemical cell
functionality VALIDATED
CNT diameter median ~30SkyNanoID/IG ~1
Coulombic efficiency 80%

TASK 4: THERMAL BUDGETING

4-8X improvement in thermal efficiency normalized to mass C product

System Parameter (Single Cell Configurations)	BP1 (GFC)	BP2
	(kWh/g-C)	(kWh/g-C)
Sustaining Heat Load (100 mA/cm ²)	0.687	0.199 ± 0.048
Sustaining Heat Load (150 mA/cm ²)	0.783	0.103 ± 0.018

Ratio of electricity for heat input : electricity for electrolysis IMPROVED

Reactor	Heat Load (kWh/g-C)	Electrolysis Load (kWh/g-C)	Heat/Electrolysis Load Ratio (Target <1)
BP1 GFC (100 mA/cm ²)	0.687	0.0401	17.1
BP1 GFC (150 mA/cm ²)	0.783	0.0601	13.0
BP2 (100 mA/cm ² , single cell)	0.199	0.0489	4.07
BP2 (150 mA/cm ² , single cell)	0.103	0.0565	1.82

SkyN

TASK 6: TEA w/ NREL

Assumptions

Nano

Parameter	Value
Inlet CO ₂ Concentration (%)	4.3
CO ₂ Price (\$/tonne)	0
Electricity Price (\$/kWh)	0.03
Electrolyzer CAPEX Cost (\$/kW)	4,000
Electrolyzer CAPEX Cost (\$/m2)	20,000
Electrolyzer Replacement Interval (years)	5
Electrolyzer Replacement Fraction (%)	25
Capacity Factor (%)	90
Voltage (V)	5
Faradaic Efficiency (%)	85
Current Density (mA/cm2)	100

TEA Methodology

- Decided to use NREL resources to model a larger pilot plant
- Assumed a 50kg/hr plant, @ 90% capacity equating to 394 tonnes CNT/year (1,418 tonnes CO2)

TASK 6: TEA PFD

TASK 6: ASPEN-PLUS MODEL

demonstrate a MSP of \$19.16/kg at a scale of 50kg/hr

Preliminary results

 Electrolyzer makes up overwhelming majority of cost, with labor making up 2nd
highest cost – used molten
carbonate fuel cell pricing as model

NEXT STEPS

- Finalizing CO2 uptake experiments with larger BP2.0 cell
- Very quickly evaluate any improvements from BP2.0 cell design to integrate into BP2.9 design; incorporate electrolyte flow system into design
- Design + order components for BP2.9 (200g/hr)
- Work with TVA to collect increased amount of flue gas
- Scale-up of auxiliary systems required for full-system 10-hr continuous operation

QUESTIONS?

NETL Program Manager: Natalie Iannacchione DOE HQ PM: Amishi Claros DOE Tech Manager: Joseph Stoffa

APPROACH

	UTIILS	Measured/Current	Projected/Target	
		Performance	Performance	
Reaction ³		Li2CO3> Li2O + O2 + C Li2O + CO2 → Li2CO3		
Chemical Equation	mol ⁻¹	Balanced chemical equation		
ΔH° _{IXN}	kJ/mol	-393.5		
ΔG° _{rxn}	kJ/mol	615 @ 700C		
Reaction Conditions	1 1	1		
CO ₂ Source ⁴	-	Natural gas flue gas	Natural gas flue gas	
Catalyst ⁵	-	Fe (CNT growth)	Fe (CNT growth)	
Pressure	bar	1	1	
CO ₂ Partial Pressure	bar	N/A	N/A	
Temperature	°C	750	750	
Nominal Residence Time ⁶	sec	3600	3600	
Once-Through Performance ⁷	1	1		
CO ₂ Conversion ⁸	%	93%	80%	
Selectivity to Desired Product ⁹	%	90%	80%	
Yield of Desired Product ¹⁰	%	90%	80%	
Product Composition	1	1		
Desired Product ¹¹	- -	MWCNTs	MWCNTs	
Main Product Impurities ¹²	-	other C structures	Other C structures	
Purity of Finished Product ¹³	%	90%	80%	
Product Production ¹⁴	kg/hr	0.04kg/hr	0.2kg/hr	
Co-Products ¹⁵	-	02	02	
Co-Product Production ¹⁶	kg/hr	1.04kg/hr	0.52kg/hr	
Product Properties ¹⁷	l	İ		
Density	kg/m ³	90	1170-220	
Particle Size	(microns)	<30nm diameter	<30nm diameter	
Surface Area	m²/g	25-40	30-300	
Commercial Product Properties ¹⁸		<u>с</u>	urrent	
Density	kg/m ³	220		
Particle Size	microns	.02		
Surface Area	m²/g	1300		
U.S. Market Size	Tonnes/y r	1542		
Global Market Size	Tonnes/y r	77089		
Market Price	\$/kg	110		

