Intensified Catalytic Conversion of CO₂ into High Value Chemicals

Project Number: DE-FE0031920 Performing Organization: University of Kentucky Principal Investigator: Jesse Thompson

> National Energy Technology Laboratory 2022 Carbon Management Project Review Meeting Pittsburgh, PA - August 15 -19, 2022

Project Overview

- Develop technology to convert CO₂ to valuable products to partially offset carbon capture costs from the utility and industrial sectors.
- Contribute to the production of a formic acid at a lower cost than is currently available, potentially disrupting C1 feedstock markets
- Project Period: 10/1/2020 9/30/2022 (2 years)
- Funding: Federal \$1M; CS \$250K; Total \$1.25M

Project Objectives

Developing CO_2 utilization technologies to reduce the cost of post-combustion CO_2 capture through:

- Screening and production of engineered CO₂ reducing catalysts capable of producing C1/C2 products, including formic acid (formate)
- 2. Immobilization and protection of the catalyst within a flow-through process for <u>increase catalyst lifetime</u> and continuous production
- 3. Develop a <u>pressurized electrochemical reactor</u> to increase production rates
- 4. Long-term <u>stable operation with high selectivity</u> towards formic acid (formate)

Captured CO₂

University of Kentucky

Options for CO₂

http://www.netl.doe.gov/research/coal/carbon-storage/research-and-development/co2-utilization

Formic Acid (Formate)

Formic acid (HCO₂H) as the target:

- 1) Lowest Gibbs energy input
- 2) Lowest atomic (proton/electron) input
- 3) High potential for growth in commercial market for formic acid

University of Kentucky

Formic Acid Market

- Current commercial uses include as a preservative for animal feeds, leather tanning, and in rubber production
- Production is almost exclusively in Europe and China. Almost no formic acid production within US.
- Potential future markets include in formic acid fuel cell, and as a liquid hydrogen storage medium for transportation applications.

Formic Acid Production

Industrial formic acid is produced from methanol (BASF/Kemira Process) (methanol typically comes from energy intensive steam methane reforming)

Formic Acid Production - LCA

The energy required to separate and purify formic acid makes up the majority of the GWP for the comparative system

Comparison Product System: NETL Default

CPS = Methyl Formate route

CO₂ conversion to formic acid by the Andora Process LCA report DE-FE0031720 (2022)

Alternative Production Pathway --Electrochemical CO₂ Reduction

Formic Acid with CO_2 and H_2O as inputs: Anode Reaction:

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2$

Cathode Reaction:

 $2CO_2 + 2H^+ + 4e^- \rightarrow 2HCOO^-$

Net Reaction:

 $2H_2O + 2CO_2 \rightarrow 2HCOO^- + 2H^+$

Water or hydrogen can be used to generate protons and electrons at the anode, but the reaction product at the cathode will depend on the <u>electrode/catalyst</u>.

Why So Many Reaction Products?

While the reduction of CO_2 to formic acid can be a relatively simple process (requiring H⁺ and 2e⁻), when more reduced products are desired the protonation of CO_2 on the catalyst surface can be quite difficult and leads to a range of reaction products.

Challenges and Limitations to CO₂-U

- Reaction rate Matching CO₂ source
- Catalyst stability
 - Degradation due to overpotential
 - Faradic inefficiencies
 - Oxidants/inhibitors

• Electrode charge density and stability

- Active surface area
- Degradation
- Purification
 - Catalyst selectivity
 - Separation of co-products

UK CAER EBOCU Process

UK CAER Enhanced Bi-Metallic Oxide Carbon Utilization (EBOCU) process focuses on: (1) Using bi-metallic metal oxide catalyst with tailored/optimized properties, (2) Leverage pressurized operation to enhance CO_2 conversion

Our Approach to Address Limitations

- Reaction rate
- Catalyst Stability

(1) Catalyst ⁻ Development

- Electrode degradation
- Electrode charge density

Purification of Formic Acid Maximizing selectivity

Catalyst for CO₂ Reduction

Hydrothermal synthesis of bimetal/oxide (CuCo/CuCoOx and CuSn/CuSnOx) catalysts

M1 – Cu; M2 – Co or Sn; O2 – nonstoichiometric oxygen

Proposed mechanism of formation of formic acid on bimetal/oxide catalysts from CO₂

<u>Goal</u>: Synthesized and tested different ratios of Co, Cu and Sn bimetal/oxide nano-catalysts for production of C1/C2 compounds from CO_2

Catalyst for CO₂ Reduction

Synthesizing a series of Sn:Cu catalysts with different molar ratios was our primary focus

Electrode for CO₂ Reduction

Carbon Xerogel (CX) is a good scaffold to immobilize catalysts while also maintaining good conductivity and gas permeability

H-Cell Screening

University of Kentucky

Flow Cell Optimization

- CD: 48 mA/cm²
- FE: 81.2% (energy)
- 29% conversion (CO₂ input)
- 1.65 g/hr formic acid

TMP, LCA, TEA

Technology Maturation Plan (TMP)

 Describes the current technology readiness level (TRL) of the proposed technology/technologies, relates the proposed project work to maturation of the proposed technology, describes the expected TRL at the end of the project, and describes any known post-project research and development necessary to further mature the technology.

Life-Cycle Analysis (LCA)

 An LCA will be performed to demonstrate the potential of the proposed intensified electro-catalyst process to be a substantive CO₂ mitigation option by verifying the life cycle GHG reduction potential of the products(s) and technology (on a percent reduction basis) relative to current state-ofthe-art pathways.

Final Techno-Economic Assessment with Technology Gap Analysis

 A high-level return-on-investment (ROI) analysis will be conducted to assess the viability of the proposed process to reduce GHG emissions from power plants based on the collected lab-scale data.

TMP

Technology Maturation Plan (TMP) - Update

Performance attributes and targets after completion of this project						
Component	TRL at beginning of Project	TRL at end of Project	Performance Attribute/Target			
Bimetallic catalyst	2	3	Catalyst capable of formic acid selectivity of > 80%			
Anode/cathode materials	3	4	CCE electrode with ohmic impedance contribution < 10 ohm.			
Fully integrated combined system	Illy integrated 2 3		Production of 25 mM Formic acid, 50% Faradaic Efficiency, and operating at < 4 V. Long-term production of formic acid for >50 hours at 5 mM/hr			

LCA and TEA

- Comparison system is formic acid produced from the Kemira process with European data added into our LCA, but using US power (openLCA)

- The main GHG source in the comparison system is steam used to separate methanol from formic acid.

- In our system we are anticipate using IEX to isolate and separate formic acid from the catholyte solution

- The main equipment costs will come from construction of the electrolyzer, and the ion exchange system to separate the formic acid from the process solution

Success Criteria

Due Date	Success Criteria (Task #)			
9/30/2021	Catalyst capable of <u>formic acid selectivity of > 80%</u> (Task 2)	100%		
3/31/2022	CCE electrode with <u>ohmic impedance contribution</u> < 10 ohm (Task 3)	100%		
9/30/2022	Flow cell with production of <u>25 mM Formic acid</u> , <u>50% Faradaic Efficiency</u> , and operating at < 4 V (Task 4)	100%		
9/30/2022	Long-term production of formic acid for <u>>50 hours</u> at 5 mM/hr (Task 4)	25%		

Key Project Takeaways

- Using KHCO₃ catholyte is a way to potentially match with CO₂ capture systems in the future
- Operating at slight pressure to boost CO₂ in catholyte solution can increase production
- Previous TEA and LCA's showed that the separation processes are important and need to be considered in this project

Project Schedule

					Feder	Federal FY 20/21 and 21/22						
	Length			Primary								
Task Number and Name	(months)	Start	End	Personal	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. Project Management and Planning	24	10/1/20	9/30/22	Jesse								
1.1 Project Management Plan	24	10/1/20	9/30/22	Jesse								
1.2 Technology Maturation Plan	24	10/1/20	9/30/22	Jesse								
2. Development of Electrocatalysts for CO2 reduction	18	10/1/20	3/31/21	Muthu								
2.1 Eectrocatalysis Formulation	12	10/1/20	9/30/21	Muthu								
2.2 Electrocatalysis Characterization	6	10/1/21	3/31/22	Muthu								
M4. Synthesis of four homogeneous bi-metal oxide catalyst with different molar ratios of Cu and Sn/Co.			9/30/21					*				
3. Reactor Design and Catalyst Evaluation	18	10/1/20	3/31/22	Daniel								
3.1 Evaluation of Catalyst Coated Electrodes (CCE)	9	10/1/20	6/30/21	Daniel								
3.2 Half-cell Parametric Testing of CCE	18	10/1/20	3/31/22	Daniel								
M5. 30% decline in cathode/anode after 50 CV cycles			9/30/21					★				
4. Integrated Reactor and Catalyst Testing	18	4/1/21	9/30/22	Daniel								
4.1 Full Cell Design and Integration	12	4/1/21	3/31/22	Daniel								
4.2 Stability Testing	12	10/1/21	9/30/22	Daniel								
4.3 Long-term Reactor Operation	18	4/1/21	9/30/22	Daniel								
M6. Flow cell capable of 25 mM Formic Acid production at 2 mL/min with Faradaic Efficiency of 40%			6/30/22								۴	
5. Final Techno-Economic Assessment with Technology Gap Analysis	6	4/1/22	9/30/22	Jesse/Ayo								
6. Life Cycle Analysis	6	4/1/22	9/30/22	Jesse								

State Point Table

	Units	Measured/Current Performance	Projected/Target Performance					
Synthesis Pathway Steps ¹								
Step 1 (based on CO ₂)	mol ⁻¹	$CO_2 + 2H^+ + 2e \rightarrow HCOOH (pH < 3.75) CO_2 + H^+ + 2e \rightarrow HCOO^- (pH > 3.75)$						
Step 2 (anodic)	mol ⁻¹	$2H_2O \rightarrow O_2 + 4H^+ + 4e$						
Overall	mol ⁻¹	$2CO_2 + 2H_2O \rightarrow O_2 + 2HCOOH$						
Source of external intermediate 1		(e.g., natural gas, oil, renewable energy, etc)						
Source of external intermediate 2		(e.g., natural gas, oil, renewable energy, etc)						
Source of external intermediate n		(e.g., natural gas, oil, renewable energy, etc)						
Reaction Thermodynamics ^{2,3}		1						
Reaction ⁴		Electrochemical						
ΔH^{o}_{Rxn}	KJ/mol	264.2						
ΔG°_{Rxn}	KJ/mol	697.6						
Conditions	1	(range)	(range)					
CO ₂ Source ⁵	 	+99.% pure CO_2 supplied from CO_2 capture	+99.% pure CO_2 supplied from CO_2 capture					
	1	plant	plant					
Catalyst ⁶	 -	Sn ₉₅ Cu ₅	Sn ₉₅ Cu ₅					
Pressure (bar)	1	Ambient – 5 psi	Ambient – 5 psi					
CO_2 Partial Pressure (bar)	 							
Temperature (°C)	, 1 1	25°C	25°C					
Performance	1	(range)	(minimum)					
Nominal Residence Time ⁷ (sec)	1							
Selectivity to Desired Product ⁸	%	81.2%	>80%					
Product Composition ⁹	1	range)	(optimal)					
Desired Product	mol%	Formic acid 81%	Formic acid 99%					
Desirable Co-Products	mol%	-	-					
и и	mol%							
Unwanted By-Products	mol%	CO 19%	CO <1%					
и и	mol%							
Grand Total	mol%		100%					

Acknowledgements

- DOE-NETL: Isaac "Andy" Aurelio, Katharina Daniels, Kyle Smith
- UK CAER: Muthu Gnanamani, Ayo Omosebi, Pom Kharel, Naser Matin, Md Ariful Hoque, Lisa Richburg, Kunlei Liu

TRIMERIC CORPORATION

