Carbon Conversion Program

Joseph Stoffa, PhD Technology Manager

National Energy Technology Laboratory (NETL)

One of 17 U.S. Department of Energy (DOE) national laboratories; producing technological solutions to America's energy challenges.

Mission

- Ensuring affordable, abundant and reliable energy that drives a robust economy and national security, while
- Developing technologies to manage carbon across the full life cycle, and
- Enabling environmental sustainability for all Americans.

Vision

To be the nation's premier energy technology laboratory, delivering integrated solutions to enable transformation to a sustainable energy future.

Mission

- Minimize the climate and environmental impacts of fossil energy
- Advance carbon management through multiple utilization approaches

Goals

- Economically transform CO₂ into products, in an environmentally conscious manner
- Integrated test systems

Drivers

- United States 2020 CO_2 emissions \approx 4.7 gigatonnes
 - Total global CO_2 emissions in 2021 \approx 36.3 gigatonnes

Challenges

- Scale of CO₂ emissions relative to CO₂ consumption
- Qualifying economic viability and environmental impact requires significant resources
 - Technical viability is relatively easy to qualify
- Electricity prices rarely negative/free
- "It's tough to make predictions, especially about the future"

Carbon Utilization Program Structure

Carbon Utilization Program R&D Areas

R&D through Research and Innovation Center

- Majority focus on conversion into chemicals
- Activity in catalyst design, microwave reformation, reactive capture, and more

Life Cycle Analysis through Energy Systems Analysis Team

- Vital to determining economic viability and environmental impact
- Active in Global CO₂ initiative
- Challenges
 - Working to harmonize LCA methodology with other groups
 - Requires collaboration across multiple offices, departments, and external entities

Techno-Economic Analysis through Energy Process Analysis Team

- All successful technologies must add value
- Sensitivity analysis dependent upon many unknowns
- Challenges
 - Not as straightforward to qualify as technical viability

Extramural research outside of NETL

Various Funding Mechanisms Employed

- Field Work Proposals with other national laboratories
- Funding Opportunity Announcements
 - Majority of funding is competitively awarded
- Grant Programs
 - SBIR and STTR for small businesses and institutions of higher education
- Other mechanisms including TCF, ACT, EPSCoR

Robust Project Portfolio

- Thirty-five active projects within the portfolio and growing quickly
 - Mineralization, conversion, and biological uptake

Supporting R&D in new and existing areas

• Reactive Capture and Conversion (RCC)

Collaboration with multiple stakeholders

- Necessary due to the scale and breadth of the challenge
- Interest in carbon conversion has increased drastically within the last six months

Expanding the program quickly

• Funding for and interest in the program are increasing quickly

Tomorrow will look a lot like today

- Mix of fossil, renewable, and nuclear resources
 - Abundant waste heat integration opportunities
- Industrial electricity prices of \$60 \$80 / MWh

Inexpensive and Abundant Hydrogen

- \$1/kg Hydrogen
 - Thermochemical conversion of CO_2 into chemicals and plastics
 - Industry widely decarbonized (e.g. steel, cement, fertilizer)

Techno-Cornucopian worldview

- Inexpensive electricity at \$20 \$30 / MWh
- Widescale electrification
- Favorable for electrochemical approaches

Other Unknowns

• Carbon prices/credits, DAC costs, energy breakthroughs, etc...

PP 987 – 988 of BIL

(2) GRANT PROGRAM.—

- (A) IN GENERAL.—Not later than 1 year after the date of enactment of the Infrastructure Investment and Jobs Act, the Secretary shall establish a program to provide grants to eligible entities to use in accordance with subparagraph (D).
- (B) ELIGIBLE ENTITIES.—To be eligible to receive a grant under this paragraph, an entity shall be—
 - (i) a State
 - (ii) a unit of local government
 - (iii) a public utility or agency.

(D) USE OF FUNDS.—An eligible entity shall use a grant received under this paragraph to procure and use commercial or industrial products that—

- ''(i) use or are derived from anthropogenic carbon oxides; and
- ''(ii) demonstrate significant net reductions in lifecycle greenhouse gas emissions compared to incumbent technologies, processes, and products.'';

NATIONAL ENERGY TECHNOLOGY LABORATORY

PP 988 of BIL (d) AUTHORIZATION OF APPROPRIATIONS. Funding totals ~\$310MM over fiver years \$41,000,000 for fiscal year 2022; \$65,250,000 for fiscal year 2023; \$66,562,500 for fiscal year 2024; \$67,940,625 for fiscal year 2025; and \$69,387,656 for fiscal year 2026.

Support for R&D on Mineralization Technologies

DE-FOA-0002614 – Carbon Management

- FOA released 05/05/2022
- Applications received 07/22/2022
- Multi-program FOA
 - Carbon Conversion
 - Carbon Dioxide Removal
 - Point Source Carbon Capture Technology
 - Carbon Storage Technology
- AOI-1A. Lab-Scale Testing of Mineralization Systems to Generate Commercial Products

DE-FOA-0002654 – Carbon Utilization Technology: Improving Efficient Systems for Algae

- Issued by EERE BETO
- Topic Area 2: Algae-based technology to utilize anthropogenic CO₂ from utility and industrial sources
 - Up to five awards at \$2MM each

DE-FOA-0002403 – Engineering-Scale Testing and Validation of Algae-Based Technologies and Bioproducts

- Four selections at ~\$2MM DOE share each
- Support for R&D to develop and test technologies that can utilize carbon dioxide from power systems or other industrial sources for bio-mediated uptake by algal systems to create valuable products and services.
- Scale of ~1000 liters

Largest project count within our portfolio

- The majority of active projects
- Focusing mostly on high volume with some support of R&D into high-value

Several conversion technologies under consideration

- Thermochemical, electrochemical, membrane, molten salt, plasma, microwave
 - Optimal route heavily dependent on CO₂ source, raw material costs, and geography

A range of liquid, gas, and solid products

- Formic acid, polymers, ethylene, aromatics, acetic acid, methanol, dimethyl carbonate, propane, propylene, carbon monoxide, nanotubes, graphene, etc...
 - Ensure that we minimize duplication across DOE offices
 - Fundamental tradeoff between high-volume and high-value

Challenges

• Scale of CO₂ emissions relative to CO₂ consumption

Newer area of focus within the program

- Published RFI seeking input on RCC in 2019
- RCC is distinct from other capture technologies
- CO₂ becomes incorporated into the final product and is neither regenerated, transported for further use, nor stored as pure CO₂
- Avoids energy intensive regeneration
 - Adsorption towers are also a relatively expensive component
- <u>https://www.nrel.gov/docs/fy21osti/78466.pdf</u>
- <u>https://www.nrel.gov/bioenergy/workshop-reactive-co2-capture-2020-proceedings.html</u>

Targeted lab call

Focus on conversion or mineralization

Five national nab projects

- LLNL Direct Air Reactive Capture and Conversion for Utility-Scale Energy Storage
- NETL Integrating CO₂-Selective Polymer Layers and Electrocatalytic Conversion
- NREL A Pressure-Swing Process for Reactive CO₂ Capture and Conversion to Methanol through Precise Control of Co-Located Active Sites in Dual Functional Materials
- ORNL Porous Catalytic Polymers for Simultaneous CO₂ Capture and Conversion to Valueadded Chemicals
- PNNL Integrated Capture and Conversion of $\rm CO_2$ into Materials: Pathways for Producing $\rm CO_2$ -Negative Building Composites

Carbon Conversion Contacts and Resources

Amishi Claros

FECM Program Manager

Amishi.Claros@hq.doe.gov

Joseph Stoffa

NETL Technology Manager

Joseph.Stoffa@netl.doe.gov

https://netl.doe.gov/coal/carbon-utilization

