

CarbonBuilt

Project Number: DE-FE0031915 Project Manager: Isaac "Andy" Aurelio

Prepared by: Dr. Dale Prentice, Dr. Othman AlSheeradah, Dr. Manas Sarkar, Prof. Dante Simonetti and Prof. Gaurav Sant Laboratory for the Chemistry of Construction Materials (LC²) UCLA Samueli School of Engineering

Prepared for: 2022 Carbon Management Research Project Review Meeting

August 15th, 2022

Where: Pittsburgh, PA

Carbon Management Research Project Review Meeting, 15th Aug, 2022

Samueli

School of Engineering

UCLA

The problem at hand – CO₂ emissions from cement/concrete

CarbonBuilt

Samueli

School of Engineering

Concrete ~ 8% of global CO₂ emissions

UCLA

- Most widely used substance after water
- 90% of emissions from production of cement
- No broadly-applicable alternatives
 - 2x the combined volume of steel, plastics, wood, aluminum
- CO₂ curing appears promising, but...
 - Enabling materials have been expensive or scalelimited
 - Traditionally has required concentrated and purified CO₂
- Large-scale demonstrations needed
 - Technology feasibility needs to be rigorously proven

Carbon Management Research Project Review Meeting, 15

Global concrete market ~ \$ 1 trillion / year

UCLA

 Ready mixed concrete has the largest market share

Laboratory for the Chemistry

of Construction Materials

- Lower construction quality, increased safety risks
- Increasing use of prefabricated concrete is a rising industry trend
- Precast concrete
 - Architectural and structural
- Concrete masonry
 - CMUs (i.e., blocks), Bricks, pavers, etc.

CarbonBuilt

Ready-mix concrete casting on-site

Concrete Masonry Unit (CMU)

Architectural precast concrete façade

Samueli

Accelerated concrete carbonation curing pathways

Carbonation during mixing

- Utilizes 100% CO₂
- Requires processing to purify CO₂
- Additional transport required to obtain CO₂

Carbonation post-forming

- Pressure reactor CO₂ steadily released into reactor to maintain specified pressure
- Utilizes 100% CO₂

- Flow through reactor uses CO₂ straight from emitter
- Requires gas processing
- Utilizes 2-100% CO₂

Accelerated concrete carbonation curing pathways

Carbonation during mixing

- Utilizes 100% CO₂
- Requires processing to purify CO₂
- Additional transport required to obtain CO₂

Carbonation post-forming

- Pressure reactor CO₂ steadily released into reactor to maintain specified pressure
- Utilizes 100% CO₂

- Flow through reactor uses CO₂ straight from emitter
- Requires gas processing
- Utilizes 2-100% CO₂

Carbonation of primary feedstock – Portlandite (Ca(OH)₂)

CarbonBuilt

 Portlandite carbonation is key reaction in concrete carbonation

UCLA

 CO_2 +Ca(OH)₂ \rightarrow CaCO₃+H₂O

- Carbonation of portlandite particles is near-complete within 24 h
- Reaction kinetics are largely independent of CO₂ concentration for flue gas concentrations (≥ 2 %)
- The Significance: Pressurization, CO₂ enrichment, or significant heating is not required for portlandite carbonation

Samueli

CarbonBuilt

 Identification of three most-preferred geometries compatible with the Reversa[™] process

UCLA

- Development of a process model that informs the scale-out of the process to produce diverse precast (structural) components
- Modification and validation of existing prototype
- Completion of TEA and LCA to quantify the market viability and lifecycle impact of the Reversa[™] technology

Samueli

Concrete component selection and strength targets

- Concrete units were chosen based on technical and market prospects
- Based on combined scoring criteria: concrete masonry units (CMU), segmented retaining walls (SRW), and wet-cast manholes were selected
- Optimized processing and mixture formulation produced for each product exceeded ASTM strength targets
- Portlandite was used as main feedstock and exceeded conversion targets of 0.2 gCO₂/gCH

CarbonBuilt

- Process flow diagram was developed to account for gas processing requirements
- Based on the process flow diagram, two Aspen models were developed:
- Steady-state model that assesses
 24-h average CO₂ uptake based on reactor conditions (RH, [CO₂] and T)
- Dynamic simulations capable of simulating the reactor and the process conditions across the full 24h operating window

Samueli

School of Engineering

UCLA

NATIONAL

CO₂ uptake regression conversion models developed

- Regression models were developed to estimate CO₂ uptake across varying carbonation conditions for each product
- Inputs:
 - Temperature (20-to-65 °C)
 - Inlet gas relative humidity (10-to-80%)
 - CO_2 concentration (4-to-14 vol.%)
- Model based on maximum conversion of available hydrates.
- Model parameters:

X (conversion) = $x + a[CO_2] - bRH + cT$

UCLA

- Integrated regression models uses 24-h conversion of concrete component using [CO₂], T and RH parameters – fitted well to bench-scale data
- A protocol has been developed for changing the Aspen simulation for different concrete components
- Approach allows for scalable design based on concrete inclusion in reactor and inlet gas flow conditions
- This simulation approach is ideal for high volume sensitivity analysis to determine effect of average operating conditions on net CO₂ uptake

Samueli

School of Engineering

NATIONAL

Dynamic Aspen simulations

UCLA

- Rate kinetics data included with regression models for time dependent conversion
- Coupled heat mass transfer model from inlet gas conditions to concrete within reactor determines reactor and unit conditions
- Based on calculated reactor conditions conversion of concrete altered
- Estimated CO₂ uptake based on concrete type and reactor conditions is possible

Reactor conditions determine CO₂ uptake from concrete components based on RH, T and [CO₂]

Samueli

School of Engineering

NATIONAL

Presentation takeaways

- CO₂ mineralization enables an approach to produce construction products while utilizing CO₂ emissions, with strong market potential
 - CO₂ utilization in concrete without a CO₂ capture step
 - Impactful potential due to the large market size of concrete
- The UCLA team has successfully identified suitable concrete products for the Reversa process
- Appropriate mixture designs and operating conditions have been identified for optimum CO₂ uptake for each selected concrete component
- A process model has been developed to assist with scaling system design and assisting design work for system fabrication

Future Work

CarbonBuilt

 System design underway to incorporate carbonation gas processing requirements

UCLA

- Computational fluid dynamics will be employed to ensure equal gas flow distribution across reactor
- System build will aim to process 10-to-30 tonnes of concrete per day
- The process will be deployed at the National Carbon Capture Center (NCCC) in Wilsonville, Alabama in 2023
- Completion of TEA and LCA to quantify quality of system design post-demonstration

Samueli

UCLA

Thank you for listening

Questions??

Contact information

- Dr Dale Prentice:
 - Email: dalepprentice@ucla.edu
- Prof. Gaurav Sant:
 - Email: gsant@ucla.edu

Useful links: Carbon built website: https://www.carbonbuilt.com/

Institute for Carbon Management: https://icm.ucla.edu/ Production of Inorganic Materials – Concrete and Cement

Technology Performance Data

	Units	Measured/Current	Projected/Target
		Performance	Performance
Reaction			
Thermodynamics ^{1,2}			
Chemical Equation	mol ⁻¹	Ca(OH) ₂ +CO ₂	\rightarrow CaCO ₃ +H ₂ O
ΔH° _{rxn}	kJ/mol	-115.102	
ΔG° _{rxn}	kJ/mol	-74.953	
Reaction Conditions			
CO ₂ Source ³		Synthetic coal-fired flue gas	Coal-fired flue gas
Pressure	bar	1.01325	1.01325
CO ₂ Partial Pressure	bar	0.02-0.14	0.02-0.14
Temperature	C°	25-75	25-75
Nominal Residence Time – batch reactor ⁴	h	18-24	18-24
Alkaline Reactant Source ⁵		Ca(OH) ₂	Ca(OH) ₂
Process Route ⁶	(direct/	Direct	Direct
	indirect)		
Once-Through			
Performance ⁷			
CO ₂ Conversion ⁸	(%)	NA	NA
CO ₂ Uptake Potential ⁹	(g-CO ₂ /g material)	0.59	0.59
CO ₂ Uptake Actual ¹⁰	(g-CO ₂ /g material)	0.35-0.53	0.2
Product Properties ¹¹			
Desired Product			
Compressive Strength ¹²	(MPa)	20-49	13.8-42
Density	(kg/m ³)	2000	2000
Product Production	(kg/h)		
Commercial Product		Current	
Properties ¹³			
Commercial Product		Concrete Masonry Units, Segmented	
		retaining walls, and concrete manholes	
Compressive Strength ¹²	(MPa)	13.8-42	
Density	(kg/m ³)	2000	
U.S. Market Size	(Tonnes/yr)	500 M	
Global Market Size	(Tonnes/yr)	>10 B	
Market Price	(\$/kg)	0.06-0.40	