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The problem at hand – CO2 emissions from cement/concrete
• Concrete ~ 8% of global CO2 emissions

– Most widely used substance after water
– 90% of emissions from production of cement

• No broadly-applicable alternatives
– 2x the combined volume of steel, plastics, wood, 

aluminum
• CO2 curing appears promising, but…

– Enabling materials have been expensive or scale-
limited

– Traditionally has required concentrated and purified 
CO2

• Large-scale demonstrations needed
– Technology feasibility needs to be rigorously proven
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Concrete construction industry

• Global concrete market ~ $ 1 trillion / year
• Ready mixed concrete has the largest 

market share
– Lower construction quality, increased 

safety risks
• Increasing use of prefabricated concrete is 

a rising industry trend
• Precast concrete

– Architectural and structural
• Concrete masonry

– CMUs (i.e., blocks), Bricks, pavers, etc.
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Accelerated concrete carbonation curing pathways

Carbonation during mixing Carbonation post-forming

60 
psi

CO2 
Source

CO2 
Source

CO2

• Utilizes 100% CO2
• Requires processing to purify CO2
• Additional transport required to obtain CO2

• Pressure reactor – CO2 
steadily released into reactor 
to maintain specified 
pressure

• Utilizes 100% CO2

• Flow through reactor –
uses CO2 straight from 
emitter

• Requires gas processing 
• Utilizes 2-100% CO2
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Carbonation of primary feedstock – Portlandite (Ca(OH)2)

• Portlandite carbonation is key reaction in 
concrete carbonation

CO2+Ca(OH)2 →CaCO3+H2O

• Carbonation of portlandite particles is 
near-complete within 24 h

• Reaction kinetics are largely independent 
of CO2 concentration for flue gas 
concentrations (≥ 2 %)

• The Significance: Pressurization, CO2 
enrichment, or significant heating is not 
required for portlandite carbonation
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Targets for ongoing project: DE-FE0031915
• Identification of three most-preferred 

geometries compatible with the Reversa™
process 

• Development of a process model that 
informs the scale-out of the process to 
produce diverse precast (structural) 
components

• Modification and validation of existing 
prototype

• Completion of TEA and LCA to quantify the 
market viability and lifecycle impact of the 
Reversa™ technology 
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• Concrete units were chosen based on 
technical and market prospects

• Based on combined scoring criteria: 
concrete masonry units (CMU), 
segmented retaining walls (SRW), and 
wet-cast manholes were selected

• Optimized processing and mixture 
formulation produced for each product 
exceeded ASTM strength targets

• Portlandite was used as main 
feedstock and exceeded conversion 
targets of 0.2 gCO2/gCH
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• Process flow diagram was developed 
to account for gas processing 
requirements

• Based on the process flow diagram, 
two Aspen models were developed:

1. Steady-state model that assesses 
24-h average CO2 uptake based on 
reactor conditions (RH, [CO2] and T)

2. Dynamic simulations capable of 
simulating the reactor and the 
process conditions across the full 24-
h operating window
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• Regression models were developed to 
estimate CO2 uptake across varying 
carbonation conditions for each product

• Inputs: 
– Temperature (20-to-65 °C)
– Inlet gas relative humidity (10-to-80%)
– CO2 concentration (4-to-14 vol.%)

• Model based on maximum conversion of 
available hydrates. 

• Model parameters:

X (conversion) = 𝒙𝒙 + 𝒂𝒂 𝑪𝑪𝑶𝑶𝟐𝟐 − 𝒃𝒃𝒃𝒃𝒃𝒃 + 𝒄𝒄𝒄𝒄 0 0.1 0.2 0.3 0.4 0.5 0.6
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• Integrated regression models uses 24-h 
conversion of concrete component using 
[CO2], T and RH parameters – fitted well to 
bench-scale data

• A protocol has been developed for changing 
the Aspen simulation for different concrete 
components

• Approach allows for scalable design based on 
concrete inclusion in reactor and inlet gas flow 
conditions

• This simulation approach is ideal for high 
volume sensitivity analysis to determine effect 
of average operating conditions on net CO2
uptake

Steady-state simulations
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• Rate kinetics data included with 
regression models for time dependent 
conversion

• Coupled heat mass transfer model from 
inlet gas conditions to concrete within 
reactor determines reactor and unit 
conditions

• Based on calculated reactor conditions –
conversion of concrete altered

• Estimated CO2 uptake based on concrete 
type and reactor conditions is possible

Dynamic Aspen simulations

Rate constants determined 
for each concrete unit
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Presentation takeaways
• CO2 mineralization enables an approach to produce construction products while 

utilizing CO2 emissions, with strong market potential
– CO2 utilization in concrete without a CO2 capture step
– Impactful potential due to the large market size of concrete

• The UCLA team has successfully identified suitable concrete products for the Reversa 
process

• Appropriate mixture designs and operating conditions have been identified for 
optimum CO2 uptake for each selected concrete component

• A process model has been developed to assist with scaling system design and 
assisting design work for system fabrication
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Future Work
• System design underway to incorporate 

carbonation gas processing requirements 
• Computational fluid dynamics will be 

employed to ensure equal gas flow 
distribution across reactor

• System build will aim to process 10-to-30 
tonnes of concrete per day

• The process will be deployed at the National 
Carbon Capture Center (NCCC) in 
Wilsonville, Alabama in 2023

• Completion of TEA and LCA to quantify 
quality of system design post-demonstration

Computational fluid dynamics 
and reactor design
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Contact information
• Dr Dale Prentice:

– Email: dalepprentice@ucla.edu

• Prof. Gaurav Sant:
– Email: gsant@ucla.edu

Useful links:
Carbon built website:
https://www.carbonbuilt.com/

Institute for Carbon Management:
https://icm.ucla.edu/

Thank you for listening

Questions??

mailto:dalepprentice@ucla.edu
mailto:dalepprentice@g.ucla.edu
https://www.carbonbuilt.com/
https://icm.ucla.edu/


Production of 
Inorganic 

Materials –
Concrete and 

Cement

Technology 
Performance Data

Units Measured/Current 
Performance

Projected/Target 
Performance

Reaction
Thermodynamics1,2

Chemical Equation mol-1 Ca(OH)2+CO2 →CaCO3 +H2O
ΔH°rxn kJ/mol -115.102

ΔG°rxn kJ/mol -74.953

Reaction Conditions
CO2 Source3 Synthetic coal-fired 

flue gas
Coal-fired flue gas

Pressure bar 1.01325 1.01325
CO2 Partial Pressure bar 0.02-0.14 0.02-0.14
Temperature °C 25-75 25-75
Nominal Residence Time – batch 
reactor4

h 18-24 18-24

Alkaline Reactant Source5 Ca(OH)2 Ca(OH)2
Process Route6 (direct/ 

indirect)
Direct Direct

Once-Through
Performance7

CO2 Conversion8 (%) NA NA
CO2 Uptake Potential9 (g-CO2/g 

material)
0.59 0.59

CO2 Uptake Actual10 (g-CO2/g
material)

0.35-0.53 0.2

Product Properties11

Desired Product
Compressive Strength12 (MPa) 20-49 13.8-42
Density (kg/m3) 2000 2000
Product Production (kg/h)

Commercial Product
Properties13

Current

Commercial Product Concrete Masonry Units, Segmented 
retaining walls, and concrete manholes

Compressive Strength12 (MPa) 13.8-42
Density (kg/m3) 2000
U.S. Market Size (Tonnes/yr) 500 M
Global Market Size (Tonnes/yr) >10 B
Market Price ($/kg) 0.06-0.40
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