

Ammonium Looping with Membrane Absorber and Distributed Stripper for Enhanced Algae Growth (DE-FE0031921)

Kunlei Liu, Heather Nikolic and Mark Crocker

University of Kentucky Lexington, KY https://caer.uky.edu/co2capture/

August 15-19

Institute for Decarbonization and Energy Advancement

Project Objectives, Team and Funding

Unique, integrated CO₂ capture and utilization technology that:

- Reduces the cost of CO₂ capture
- **Boosts algae production**

College of Engineering

UK CO₂ Capture and Utilization Technology

- **Capture:** Membrane CO₂ absorber with ammonium solvent
- **Regenerate:** Distributed, solar-energy powered strippers

Enhanced Algae Growth and Cost Reduction

Just-in-time C:N Delivery at Appropriate Ratio

- Minimal chemical stress on algae with continuous CO₂/NH₃ feed
- Thermally compressed CO₂/NH₃ product stream facilitates sparging into bioreactors for high CO₂ utilization efficiency

leering

UK CO₂ Capture and Utilization Facilities

UCollege of Engineering

Project Performance and Achievements

Task	Milestone Title & Description	Verification Method		Planned Completion Date	Actual Completion Date	
1.0	Project Kickoff Meeting Held	Quarterly Report			10/31/2020	12/07/2020
1.2	TMP Complete	TMP Submitted		12/31/2020	01/17/2021	
2.2	Membrane Absorber Integrated with Existing CCS	Quarterly Report		03/31/2022	02/18/2022	
5.0	Algae Production Evaluated	Quarterly Report		03/31/2022	01/31/2022	
6.1	Design Basis Report Completed	Topical Report			12/19/2021	12/19/2021
6.2	Process Design Package Completed	Topical Report			06/30/2022	06/30/2022
Success Criterion			Percent Complete	Accomplishments		iments
			1000/	Lab-	-scale testing of NH	₃ slip on flat sheet

	Complete	
1. Demonstration of ppm levels of NH_3 slip	100%	Lab-scale testing of NH ₃ slip on flat sheet membranes achieved below 100 ppm.
2. Demonstration that 100 hour stable operation via ammonium salts formed on gas side of membrane being washable by flue gas condensate	100%	Accomplished 500-hour stable operation on both lab scale and bench scale membrane testing systems.
3. Demonstration that algae production is increased by 50% by continuous feed of CO ₂ :NH ₃	100%	Under lab culturing conditions, algae growth rate using 10:1 CO ₂ :NH ₃ is 0.17 g/L/day, versus 0.13 g/L/day and 0.11 g/L/day, respectively, using the standard N-sources NaNO ₃ and urea.

Advanced Membrane Development for Low NH₃ Slip

Lab-scale testing of NH₃ slip on flat sheet membranes achieved below 100 ppm.

Substrate: Polyethersulfone (PES) membrane supported by polyester (PET) nonwoven fabric Modification solvent: Teflon AF2400 in Fluorinert[™] FC-40

Membrane	Contact Angle/°	NH₃ Slip (ppm)
PES substrate	81	559
PES coated with 0.1 wt% Teflon AF2400 for 10 min	118	65
PES coated with 1 wt% Teflon AF2400 for 1 min	125	40
Sterlitech PTFE 0.1 μm laminated	134	80
Sterlitech PTFE 0.2 μm laminated	130	734

College of Engineering

Membrane Contactor Construction, Installation and Tested

Institute for Decarbonization and Energy Advancement

Condensate Trap

8

Performance at Bench Scale

With the hollow fiber membrane, 1000 ppm NH_3 slip can be achieved at a carbon loading 0.6 C/N (higher free amine concentration) with addition of instead of 0.8 C/N (lower free amine concentration) in 2 M NH_4OH .

ngineering

Parametric Campaign – CO₂ Capture

MICRODYN hollow fiber membrane

Membrane inner diameter: 1.8 mm Membrane area: 0.75 m² Free flow area: 5 cm² Inlet CO₂ concentration: 5%, 14% Gas feed flow rate: 1.15 CFM, 2.41 CFM, 3.67 CFM Liquid inlet pressure: 1 psig Gas inlet pressure: ~0.5 psig

- The increase if membrane inner diameter dramatically decreased the pressure drop
- Residence time is main impact on CO₂ capture efficiency

Algae Production Demonstration

Effect of CO₂:NH₃ Mole Ratio

<u>Objective</u>: to examine the effect of CO_2 :NH₃ mole ratios - simulating the gas stream from the solar stripper - on *Scenedesmus acutus* culture health and productivity

Experiments conducted in 800 mL bioreactors with constant gas sparging and different CO₂:NH₃ mole ratios (ranging from 7:1 up to 18:1)

Average productivity in g L⁻¹ day⁻¹ of *Scenedesmus acutus* grown using different Nsources^{*,**}

Urea	NaNO ₃	CO ₂ /NH ₃ (10:1)
0.11 ± 0.04	0.13 ± 0.05	0.17 ± 0.05

*Other nutrients supplied according to BG-11 recipe **Growth rates represent averages of daily growth rates

- Optimal CO₂:NH₃ mole ratio lies in the range 10:1-16:1
- Growth rate for 10:1 CO₂:NH₃ ratio is higher than obtained using traditional Nsources such as NaNO₃
- ➢ For 10:1 CO₂:NH₃, NH₃ utilization ≈ 100%, CO₂ utilization ≈ 70%

Average culture growth rate as a function of molar CO_2 :NH₃ ratio.

ollege of ngineering

Algae Production Demonstration

Effect of CO₂/NH₃ Feed Rate (x1, x1.5, x2.0); CO₂/NH₃ fixed at 10:1

- Dry mass measurements show that increasing the gas feed rate is detrimental to algae growth
- Accumulation of NH₄+/free NH₃ at higher NH₃ feed rates creates toxic environment for algae cells: according to one study, NH₃ is toxic at concentrations of >3 mM (>50 ppm)*
- <u>Note</u>: NH₄*/free NH₃ equilibrium dependent on pH and temperature:

mole fractn. $NH_3 = 1/(10^{pKa-pH} + 1)$, where $pK_a = 0.0902 + 2729.92/T_k$

ollege ot ngineering

^{*}A. Abeliovich, Y. Azov, *Appl. Environ. Microbiol.*, 1976, 31(6), 801-806.

Algae Production Demonstration

Results of ammonium ion analysis (ion chromatography) during indoor culture experiment performed at different CO_2/NH_3 gas feed rates (standard feed rate x 1, x 1.5, x 2); $CO_2/NH_3 = 10$

- Gradual accumulation of NH₄⁺ and free NH₃ in solution as culture cycle progresses, i.e., not all the NH₃ is consumed
- Free NH₃ stays within safe limit (~2 mM) for x 1 feed rate; slightly over limit for x 1.5 feed rate and significantly over limit for x 2; results consistent with observed growth rates

llege of gineering

Future Testing

Integrated Process: General Layout

- The solar thermal stripper will be located on top of the roof.
- One of the existing Open Raceway Ponds will be moved to this area to ensure just-in-time CO₂ and NH₃ delivery.

Algae System Performance Data

	Units	Measured/Current Performance	Projected/Target	
			Performance	
Algae Characteristics		I I		
Proposed Algae Strain	-	Scenedesmus acutus (UTEX B72)		
Lower Heating Value @ 25°C	kJ/kg (dry)	18,000 – 19,500		
Lipid Content ¹	wt%	1-15		
Protein Content	wt%	35-55		
Carbohydrate Content	wt%	20-25		
Algae Cultivation	1	1		
Method of Cultivation	-	Pond and PBF	{	
Water Source		Municipal	Municipal	
Pond or PBR Surface Area	m²	4.2 (pond)	4.2 (pond)	
Pond Depth or PBR Width	cm	25 (pond)	25 (pond)	
PBR Type ²	_	Open raceway	Open raceway	
Pond or PBR Volume	L L	1100 L (pond)	1100 L (pond)	
Nutrient Source - N	-	NH ₃	NH ₃	
Nutrient Source - P	-	Triple super phosphate	Triple super phosphate	
Scale of Operation – CO ₂ delivered ³	kg/hr	0.02	0.02	
CO ₂ Utilization	 			
CO ₂ Source ⁴	-	Bottled	Coal-derived flue gas	
CO ₂ Content of Source Gas	mol%	10%	4 - 12%	
Impurity or contaminant processing requirements ⁵	-	None (impurities removed during CO ₂	None (impurities removed during	
		capture)	CO ₂ capture)	
CO ₂ Processing Requirements ⁶	-	Gaseous CO ₂ from decomposition of	Gaseous CO ₂ from decomposition	
		ammonium (bi)carbonate solution in	of ammonium (bi)carbonate	
		solarregenerator	solution in solar regenerator	
CO ₂ Concentration after Processing ⁷	mol %	10 vol%	90-93% with balance of NH_3	
Delivery Method to Pond/PBR ⁸	-	Gas sparger	Gas sparger	
CO ₂ Pond/PBR Retention ⁹	%	10-14% (pond); 60-70% (PBR)	50-70% (pond); 60-70% (PBR)	
Algae Productivity ¹⁰				
Peak Productivity	g/m²/day	8.7	>12 (Kentucky)	
Annual Average Productivity	g/m²/day	~6	~8 (Kentucky)	
Projected Finished Products ¹¹		(Market Value)	(Market Size)	
Bioplastic feedstock (e.g., for EVA composite, etc.)	-	\$1000 - 5000/ton	$2 \ge 10^6$ ton/yr (all bioplastics)	

H Coll Eng	Summary						
lege of ineerir	Task Name	Percent Complete	Accomplishment				
$_{ m lg}$ Institute for Decarbonization and Energy Advancement	1.0 Project Management and Planning	N/A	 The project kickoff meeting was held on 12/07/2020. The TMP was submitted on 01/17/2021. The revised PMP was submitted on 01/12/2022. 				
	2.0 Membrane Absorber	100%	• Bench scale membrane unit integrated with existing CO ₂ Capture System for real fossil fuel generated flue gas supply and continuous operation with solvent regeneration.				
	3.0 Absorber Performance Evaluation	90%	 Validated inhibition effect of chelating additives on ammonia slip. Evaluated absorber performance applying the hollow fiber membrane and flat sheet membrane modules. Parametric campaign is underway, following the test plan, to establish solvent regeneration conditions producing the target product stream CO₂:NH₃ composition using real fossil fuel derived flue gas. 				
	4.0 Advanced Membrane Development	100%	 Coated hydrophobic layer on PES substrate with Teflon AF2400 on the customized flat sheet membrane. Lab-scale testing of ammonia slip achieved below 100 ppm. 				
	5.0 Algae Production Evaluation	100%	 Outdoor cultivation experiments in 1100 L ORPs confirmed superior productivity of cultures fed with 10:1 CO₂/NH₃ compared with CO₂/NaNO₃. Outdoor cultivation with 10:1 CO₂/NH₃ feeds was found to be ~25% and ~43% during daylight hours The corresponding productivity was 0.025 g/L/day. Algae biomass produced using the 10:1 feed possessed a remarkably high protein content (55%) and low ash content (<6%), making it well-suited for use as a bioplastic feedstock. 				
	6.0 Integrated Process Design	100%	 Completed and submitted design basis report on 12/19/2021. Completed and submitted process design package on 6/30/2022. 				
	7.0 Integrated Process Test Plan	100%	• Completed integrated system test. 16				

Acknowledgements

- **DOE-NETL**: Isaac Aurelio, Patricia Rawls, Joseph Stoffa
- DOE-HQ: Amishi Kumar
- **UKy**: Lisa Richburg, Feng Zhu, Xiaoshuai Yuan, John Adams, Fritz Vorisek, Yaying Ji, Steve Summers, and Reynolds Frimpong
- Colorado State University: Jason Quinn
 - Vanderbilt University: Shihong Lin
 - Trimeric Corporation: Andrew Sexton

Appendix Model of Integrated System

Appendix: Organizational Chart

Appendix: Gantt Chart

Task Name	Start	Finish	2020 2021 2022 2023 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04
1.0 Project Management and Planning	Thu 10/1/20	Sat 9/30/23	
Budget Period 1	Thu 10/1/20	Thu 6/30/22	
1.1 PMP	Thu 10/1/20	Sat 10/31/20	•
1.2 TMP	Thu 10/1/20	Thu 12/31/20	
2.0 Membrane Absorber	Thu 10/1/20	Wed 3/31/21	
2.1 Absorber Specificaiton and Purchase	Thu 10/1/20	Thu 12/31/20	
2.2 Absorber Installation and Integration	Wed 12/30/20	Thu 3/31/22	
3.0 Absorber Performance Evaluation	Thu 4/1/21	Wed 6/30/21	
4.0 Advanced Membrane Development	Tue 6/1/21	Tue 8/31/21	
5.0 Algae Production Evaluation	Thu 10/1/20	Thu 3/31/22	
6.0 Integrated Process Design	Fri 5/14/21	Thu 6/30/22	
6.1 Design Basis	Fri 5/14/21	Sun 12/19/21	
6.2 Design Package	Mon 12/20/21	Thu 6/30/22	1
7.0 Test Plan	Fri 10/1/21	Thu 3/31/22	
Budget Period 2	Fri 7/1/22	Sat 9/30/23	
8.0 Process Equipment Purchase	Fri 7/1/22	Fri 9/30/22	
9.0 Assembly	Sat 10/1/22	Sat 12/31/22	
10.0 Integrated Process Parametric Campaign	Sun 1/1/23	Tue 2/28/23	
11.0 Long-term Campaign	Wed 3/1/23	Sat 9/30/23	
12.0 TEA	Fri 7/1/22	Sat 9/30/23	
12.1 Process Flow and Modeling	Fri 7/1/22	Sat 9/30/23	
12.2 Membrane Modeling	Thu 12/1/22	Fri 3/31/23	
12.3 Equipment Sizing and Cost Estimation	Sat 4/1/23	Wed 5/31/23	
12.4 TEA	Thu 6/1/23	Sat 9/30/23	
13.0 TGA	Sat 4/1/23	Fri 6/30/23	
14.0 LCA	Tue 11/1/22	Mon 7/31/23	