Dehydration Membrane Reactor for Direct Production of Dimethyl Carbonate (DMC) from CO$_2$ and H$_2$

Shiguang Li, GTI Energy
Xinhua Liang, Missouri University of Science and Technology (Missouri S&T)
Miao Yu, University at Buffalo, The State University of New York (UB)

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Management Project Review Meeting
August 15 - 19, 2022
Project overview

- **Background**: Membrane reactor DME production successfully developed through an ARPA-E project (DE-AR0000806)

- **Current project objective**: Develop membrane reactor for production of dimethyl carbonate (DMC) from CO₂ and H₂
 - DMC’s market projected to grow from $895 million in 2019 to $1,207 million by 2024, at a CAGR of 6.2% from 2019 to 2024

- **Performance period**: 1/1/21 – 9/30/23

- **Total funding**: $1,269,664 (DOE: $1.0 MM, cost share: $269,664)

- **Goal**: CO₂ conversion >50%, DMC selectivity >60%

- **Team**:
 - **Member**
 - **Roles**
 - Project management and planning
 - Parametric and deactivation tests
 - Techno-economic and life-cycle analyses
 - Membrane and membrane reactor development
 - Catalyst development

DME: dimethyl ether; DMC: dimethyl carbonate

- **Equation**: \[2\text{CO}_2 + 6\text{H}_2 \rightleftharpoons \text{CH}_3\text{OCH}_3 + 3\text{H}_2\text{O}\]

- **CO₂ conversion and DME yield significantly greater than packed bed reactors reported in the literature**
One-step process intensifies a process that would otherwise require multiple steps:

- Methanol synthesis: $\text{CO}_2 + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} + \text{H}_2\text{O}$ \quad $\Delta H^0 = -49 \text{ kJ/mol}$
 Catalyst 1: CuO/ZnO/Al$_2$O$_3$ based

- DMC synthesis: $2\text{CH}_3\text{OH} + \text{CO}_2 \rightleftharpoons (\text{CH}_3\text{O})_2\text{CO} + \text{H}_2\text{O}$ \quad $\Delta H^0 = -17.3 \text{ kJ/mol}$
 Catalyst 2: CeO$_2$ based

- Combined reaction: $3\text{CO}_2 + 6\text{H}_2 \rightleftharpoons (\text{CH}_3\text{O})_2\text{CO} + 3\text{H}_2\text{O}$

Catalyst Development
Palladium-CuO/ZnO/Al$_2$O$_3$ (CZA) developed for the first reaction – methanol synthesis

TEM image: uniform nanoscale particles (~15 nm)

EDX mapping: elements of Cu, Pd, O, Al, Zn homogeneously dispersed

TEM: Transmission Electron Microscopy; EDX: Energy-dispersive X-ray Spectroscopy
0.9 wt.% Pd/CZA shows the best methanol synthesis performance in a packed bed reactor

Reaction conditions: T = 140-240°C, P = 2.8 MPa, H₂/CO₂ molar ratio = 3:1, GHSV = 2,880 mL/(g cat·h)

GHSV: Gas Hourly Space Velocity; CZA: CuO/ZnO/Al₂O₃
CeO$_2$-based catalyst developed for the second reaction – methanol dehydration

- TEM image: nanorods catalyst

- Liquid phase reaction at 140°C for DMC synthesis:
 - DMC selectivity: 100%
 - Methanol conversion: 0.48%
 - DMC yield: 8.1 mmol DMC/g$_{\text{catalyst}}$

TEM: Transmission Electron Microscopy
Removal of H₂O using a dehydration agent boosts methanol dehydration

- Dehydration agent 2-cyanopyridine (2-CP) reacts with H₂O to form 2-picolinamide

\[
\text{2-CP} + \text{H₂O} \rightarrow \text{2-picolinamide}
\]

- DMC synthesis at 140°C:

<table>
<thead>
<tr>
<th>Methanol (g)</th>
<th>2-CP (g)</th>
<th>CeO₂ (g)</th>
<th>Pressure (MPa)</th>
<th>Methanol conversion (%)</th>
<th>DMC yield (mmol\textsubscript{DMC}/g\textsubscript{cat})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>0.1</td>
<td>3</td>
<td>0.48</td>
<td>8.1</td>
</tr>
<tr>
<td>6.4</td>
<td>1.04</td>
<td>0.1</td>
<td>3</td>
<td>5.5</td>
<td>28</td>
</tr>
<tr>
<td>6.4</td>
<td>10.4</td>
<td>0.3</td>
<td>3</td>
<td>73</td>
<td>240</td>
</tr>
<tr>
<td>6.4</td>
<td>10.4</td>
<td>0.3</td>
<td>5</td>
<td>87</td>
<td>290</td>
</tr>
</tbody>
</table>
Membrane and Membrane Reactor Development
Breakthrough development of Na\(^+\)-gated, nanochannel membrane for dehydration

Science

Na\(^+\)-gated water-conducting nanochannels for boosting CO\(_2\) conversion to liquid fuels
Huazheng Li, Chenglong Gius, Shoujie Ren, Qiaobei Dong, Shenxiang Zhang, Fanglei Zhou, Xinhua Liang, Jianguo Wang, Shiguang Li and Miao Yu

Science 367 (6478), 667-671,
DOI: 10.1126/science.aaz6053

Na\(^+\) neutralizes the negatively charged NaA framework and position inside zeolite nanocavities, allowing fast transport of small H\(_2\)O molecules, whereas blocking the permeation of larger molecules, such as H\(_2\), CO\(_2\), CO, and methanol

Kinetic diameters:
- H\(_2\)O: 0.265 nm
- H\(_2\): 0.289 nm
- CO\(_2\): 0.33 nm
- Methanol: 0.36 nm
- DMC: 0.63 nm
Membrane shows high flux and selectivity for dehydration of $\text{H}_2\text{O}/\text{CO}_2/\text{CO}/\text{H}_2$/methanol mixture

- **Other selectivities**
 - $\text{H}_2\text{O}/\text{H}_2 > 190$
 - $\text{H}_2\text{O}/\text{CO} > 170$
 - $\text{H}_2\text{O}/\text{MeOH} > 80$
 - $\text{H}_2\text{O}/\text{DMC}$: not tested yet, but expected to be > 200

Kinetic diameters:
- DMC: 0.63 nm
- Methanol: 0.36 nm
- CO_2: 0.33 nm
- H_2: 0.289 nm
- H_2O: 0.265 nm
Membrane also showed good dehydration capability at even lower water concentrations

- Tested with CO₂/H₂O mixtures

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Feed water</th>
<th>Retentate water</th>
<th>Water permeance (mol/m²/s/Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Partial pressure (psi)</td>
<td>Concentration (vol%)</td>
<td>Partial pressure (psi)</td>
</tr>
<tr>
<td>120</td>
<td>1.76</td>
<td>0.35</td>
<td>1.35</td>
</tr>
<tr>
<td>150</td>
<td>0.95</td>
<td>0.19</td>
<td>0.95</td>
</tr>
<tr>
<td>180</td>
<td>0.94</td>
<td>0.19</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Membrane reactor methanol synthesis (first reaction): superior performance to packed bed

- Compared to a traditional packed bed reactor without membrane, both CO$_2$ conversion and methanol yield increased 3 times in membrane reactor.
Methanol synthesis (first reaction): good stability during 100-h testing
Technical challenge – low methanol conversion for the second reaction

Testing conditions:
- Catalyst: CeO₂
- Pressure: 500 psig
- Temperature: 150-180 ºC

Testing results:

<table>
<thead>
<tr>
<th>Temp. (ºC)</th>
<th>Methanol/CO₂ molar ratio</th>
<th>Methanol conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2.2</td>
<td>0.66</td>
</tr>
<tr>
<td>180</td>
<td>2.2</td>
<td>0.86</td>
</tr>
<tr>
<td>180</td>
<td>4.4</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Future plan:
- Optimize operating conditions to improve performance
State-point data

<table>
<thead>
<tr>
<th>Synthesis Pathway Steps</th>
<th>Units</th>
<th>Measured/Current Performance</th>
<th>Projected/Target Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 (based on CO₂)</td>
<td>mol⁻¹</td>
<td>CO₂ + 3H₂ ⇌ CH₃OH + H₂O</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mol⁻¹</td>
<td>2CH₃OH + CO₂ ⇌ (CH₃O)₂CO + H₂O</td>
<td></td>
</tr>
<tr>
<td>Source of external intermediate 1</td>
<td></td>
<td>H₂ from reforming of natural gas or electrolysis</td>
<td>No external intermediate</td>
</tr>
<tr>
<td>Source of external intermediate 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reaction Thermodynamics

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Total: 3CO₂ + 6H₂ ⇌ (CH₃O)₂CO + 3H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH°rxn</td>
<td>KJ/mol</td>
</tr>
<tr>
<td>ΔG°rxn</td>
<td>KJ/mol</td>
</tr>
</tbody>
</table>

| Conditions | Captured CO₂ from coal-, natural gas-fired or industrial flue gases |
| | [range] | [range] |

| CO₂ Source | Step1: CZA-based catalyst,; Step2: CeO₂ catalyst |
| | |

| Catalyst | |
| | |

Pressure	Bar	Step 1: 28; Step 2: 4-16	25-35
	Bar	Step1: 7; Step 2: 1.3-5.3	1.5-7
CO₂ Partial Pressure	°C	Step 1: 160-260; Step 2: 100-160	140-220
Temperature	°C	Step 1: 2,240; Step 2: 1,180	~4,480

| Performance | Sec | Step 1: 50-65; Step 2: 60-90 | 60.4 |
| | | (range) | (minimum) |

| Selectivity to Desired Product | % | Step 1: 50-65; Step 2: 60-90 | 60.4 |
| | | (range) | (optimal) |

Desired Product-DMC	mol%	~0.1	18.0
Desired Co-Products-MeOH	mol%	~32.3	10
Desirable Co-Products-CO	mol%	~17.5	0
Unwanted By-Products-H₂O	mol%	~50.1	70.0
Unwanted By-Product-DME	mol%	0	2.0
Grand Total	mol%	--	100%
Membrane reactor technology development path

DME: \(2\text{CO}_2 + 6\text{H}_2 \rightleftharpoons \text{CH}_3\text{OCH}_3 + 3\text{H}_2\text{O}\)

DMC: \(3\text{CO}_2 + 6\text{H}_2 \rightleftharpoons (\text{CH}_3\text{O})_2\text{CO} + 3\text{H}_2\text{O}\)
We are developing a membrane reactor for production of DMC.

- Na⁺-gated membrane removes water \textit{in situ}, shifting equilibrium towards product formation.

- First reaction (methanol synthesis): membrane reactor CO₂ conversion and methanol yield are 3 times greater than packed bed reactor.

- Second reaction (methanol dehydration): methanol conversion is low; approaches to resolve this technical challenge are ongoing.
Acknowledgements

- Financial and technical support

DOE NETL: Andy Aurelio, Andrea McNemar and Andrew O’Palko
Appendix – Organization chart

DOE NETL
Project Manager
Project oversight

GTI Energy
Ms. Kate Jauridez
Contract administrator

GTI Energy
Dr. Shiguang Li- PI
- Coordinate project activities
- Project management

Missouri S&T
Dr. Xinhua Liang
Catalyst development

UB
Dr. Miao Yu
Membrane reactor design, testing, and optimization

GTI Energy
Mr. Travis Pyrzynski
Parametric and deactivation tests

GTI Energy
Dr. Sekar Darujati
TEA and LCA

GTI Energy
Mr. Howard Meyer
Project QA/QC
Appendix – Gantt chart
Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.