

DE-FE0031909

Dehydration Membrane Reactor for Direct Production of Dimethyl Carbonate (DMC) from CO₂ and H₂

Shiguang Li, GTI Energy Xinhua Liang, Missouri University of Science and Technology (Missouri S&T) Miao Yu, University at Buffalo, The State University of New York (UB)

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

GTI ENERGY

Project overview

- <u>Background</u>: Membrane reactor DME production successfully developed through an ARPA-E project (DE-AR0000806)
- <u>Current project objective</u>: Develop membrane reactor for production of dimethyl carbonate (DMC) from CO₂ and H₂
 - DMC's market projected to grow from \$895 million in 2019 to \$1,207 million by 2024, at a CAGR of 6.2% from 2019 to 2024
- Performance period: 1/1/21 9/30/23
- Total funding: \$1,269,664 (DOE: \$1.0 MM, cost share: \$269,664)
- Goal: CO₂ conversion > 50%, DMC selectivity > 60%

• <u>Team</u> :	Member	Roles							
	GTI ENERGY solutions that transform	 Project management and planning Parametric and deactivation tests Techno-economic and life-cycle analyses 							
ЧЪ		• Membrane and membrane reactor development							
	MISSOURI	Catalyst development							

DME: dimethyl ether; DMC: dimethyl carbonate

- $2CO_2 + 6H_2 \Leftrightarrow CH_3OCH_3 + 3H_2O$
- CO₂ conversion and DME yield significantly greater than packed bed reactors reported in the literature

Technology description

• One-step process intensifies a process that would otherwise require multiple steps:

- Methanol synthesis: $CO_2 + 3H_2 \Rightarrow CH_3OH + H_2O$ $\Delta H^0 = -49 \text{ kJ/mol}$ Catalyst 1: CuO/ZnO/Al₂O₃ based
- DMC synthesis: $2CH_3OH + CO_2 \Leftrightarrow (CH_3O)_2CO + H_2O \Delta H^0 = -17.3 \text{ kJ/mol}$ Catalyst 2: CeO_2 based
- Combined reaction: $3CO_2 + 6H_2 \Leftrightarrow (CH_3O)_2CO + 3H_2O$
- Na⁺-gated membrane (Science, vol. 367, pp. 667, 2020) removes water in situ, shifting the equilibrium towards product formation

Catalyst Development

Palladium-CuO/ZnO/Al₂O₃ (CZA) developed for the first reaction – methanol synthesis

TEM image: uniform nanoscale particles (~15 nm)

EDX mapping: elements of Cu, Pd, O, Al, Zn homogeneously dispersed

TEM: Transmission Electron Microscopy; EDX: Energy-dispersive X-ray Spectroscopy

0.9 wt.% Pd/CZA shows the best methanol synthesis performance in a packed bed reactor

Reaction conditions: T = 140-240°C, P = 2.8 MPa, H_2/CO_2 molar ratio = 3:1, GHSV = 2,880 mL/(g_{cat} ·h)

GHSV: Gas Hourly Space Velocity; CZA: CuO/ZnO/Al₂O₃

CeO₂-based catalyst developed for the second reaction – methanol dehydration

TEM image: nanorods catalyst

Liquid phase reaction at 140°C for DMC synthesis:

- DMC selectivity: 100%
- Methanol conversion: 0.48%
- DMC yield: 8.1 mmol DMC/g_{catalyst}

Removal of H₂O using a dehydration agent boosts methanol dehydration

Dehydration agent 2-cyanopyridine (2-CP) reacts with H₂O to form 2-picolinamide

$$\bigvee_{CeO_2}^{N} \bigvee_{CeO_2}^{CN} + H_2O \xrightarrow{CeO_2}_{CeO_2}^{N} \bigvee_{CeO_2}^{O} \bigvee_{CeO_2}^{N} \bigvee_{CeO_2}^{O} \bigvee_{CeO_2}^{N} \bigvee_{CeO_2}^{O} \bigvee_{CeO_2}^{N} \bigvee_{CeO_2}^{O} \bigvee_{CeO_2}^{O$$

• DMC synthesis at 140°C:

Methanol (g)	2-CP (g)	CeO ₂ (g)	Pressure (MPa)	Methanol conversion (%)	DMC yield (mmol _{DMC} /g _{cat})
12	0	0.1	3	0.48	8.1
6.4	1.04	0.1	3	5.5	28
6.4	10.4	0.3	3	73	240
6.4	10.4	0.3	5	87	290

Membrane and Membrane Reactor Development

Breakthrough development of Na⁺-gated, nanochannel membrane for dehydration Science

Na⁺-gated water-conducting nanochannels for boosting CO₂ conversion to liquid fuels

Huazheng Li, Chenglong Qiu, Shoujie Ren, Qiaobei Dong, Shenxiang Zhang, Fanglei Zhou, Xinhua Liang, Jianguo Wang, Shiguang Li and Miao Yu

Science **367** (6478), 667-671. DOI: 10.1126/science.aaz6053

Na⁺ neutralizes the negatively charged NaA framework and position inside zeolite nanocavities, allowing fast transport of small H₂O molecules, whereas blocking the permeation of larger molecules, such as H₂, CO_2 , CO, and methanol

Kinetic diameters:

- H₂O: 0.265 nm
- H₂: 0.289 nm
- CO₂: 0.33 nm

- Methanol: 0.36 nm
- DMC: 0.63 nm

Membrane shows high flux and selectivity for dehydration of H₂O/CO₂/CO/H₂/methanol mixture ^{GTI ENERGY}

Other selectivities

- H₂O/H₂ > 190
- H₂O/CO > 170
- $H_2O/MeOH > 80$
- H₂O/DMC: not tested yet, but expected to be > 200

Kinetic diameters:

- DMC: 0.63 nm
- Methanol: 0.36 nm
- CO₂: 0.33 nm
- H₂: 0.289 nm
- H₂O: 0.265 nm

Membrane also showed good dehydration capability at even lower water concentrations

Tested with CO₂/H₂O mixtures

	Fee	ed water	Reter	\M/ator			
Temperature (°C)	Partial pressure (psi)	Concentration (vol%)	Partial pressure (psi)	Concentration (vol%)	permeance (mol/m ² /s/Pa)		
120	1 76	0.25	1.35	0.27	6.8 × 10 ⁻⁷		
150	1.70	0.55	0.95	0.19	8.1 × 10 ⁻⁷		
180	0.94	0.19	0.49	0.10	7.9 × 10 ⁻⁷		

Membrane reactor methanol synthesis (first reaction): superior performance to packed bed

Compared to a traditional packed bed reactor without membrane, both CO₂ conversion and methanol yield increased 3 times in membrane reactor

TR: traditional packed bed reactor MR: membrane reactor

Methanol synthesis (first reaction): good stability during 100-h testing

Technical challenge – low methanol conversion for the second reaction

Testing conditions:

- Catalyst: CeO₂
- Pressure: 500 psig
- Temperature: 150-180 °C

Testing results:

Temp. (ºC)	Methanol/CO ₂ molar ratio	Methanol conversion (%)
150	2.2	0.66
180	2.2	0.86
180	4.4	0.54

• Future plan:

 Optimize operating conditions to improve performance

State-point data

	Units	Measured/Current Performance	Projected/Target Performance							
Synthesis Pathway Steps										
Step 1 (based on CO ₂)	mol ⁻¹	$CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O$								
Step 2	mol ⁻¹	$2CH_{3}OH + CO_{2} \rightleftharpoons (CH_{3}O)_{2}CO + H_{2}O$								
Source of external intermediate 1		H ₂ from reforming of natural gas or electrolysis								
Source of external intermediate 2		No external intermediate								
Reaction Thermodynamics										
Reaction		Total: $3CO_2 + 6H_2 \Leftrightarrow (CH_3O)_2CO + 3H_2O$								
∆ H° _{rxn}	KJ/mol	Total: -116.1 (Step 1: -49.4, and Step 2: -17.3)								
∆ G° _{rxn}	KJ/mol	Total: 31.5 (Step 1: 4.0, a	and Step 2: 23.5)							
Conditions		(range)	(range)							
CO ₂ Source		Captured CO ₂ from coal-, natural gas-fired or industrial flue gases								
Catalyst		Step1: CZA-based catalyst,; Step2: CeO ₂ catalyst								
Pressure	Bar	Step 1: 28; Step 2: 4-16	25-35							
CO ₂ Partial Pressure	Bar	Step1: 7; Step 2: 1.3-5.3	1.5-7							
Temperature	°C	Step 1: 160-260; Step 2: 100-160	140-220							
Performance		(range)	(minimum)							
Nominal Residence Time	Sec	Step 1: 2,240; Step 2: 1,180	~4,480							
Selectivity to Desired Product	%	Step 1: 50-65; Step 2: 60-90	60.4							
Product Composition		(range)	(optimal)							
Desired Product-DMC	mol%	~0.1	18.0							
Desirable Co-Products-MeOH	mol%	~32.3	10							
Desirable Co-Products-CO	mol%	~17.5	0							
Unwanted By-Products-H ₂ O	mol%	~50.1	70.0							
Unwanted By-Product-DME	mol%	0	2.0							
Grand Total	mol%		100%							

Membrane reactor technology development path

GTI ENERGY

- We are developing a membrane reactor for production of DMC.
 - Na⁺-gated membrane removes water *in situ*, shifting equilibrium towards product formation.
- First reaction (methanol synthesis): membrane reactor CO₂ conversion and methanol yield are 3 times greater than packed bed reactor.
- Second reaction (methanol dehydration): methanol conversion is low; approaches to resolve this technical challenge are ongoing.

Acknowledgements

Financial and technical support

DOE NETL: Andy Aurelio, Andrea McNemar and Andrew O'Palko

Appendix – Organization chart

2023 Otr 1

3/31

D	Task No	SubT No	MS	Task Name	Start	Finish	Otr 4	2021	ir 1	Otr 2	Otr 3	Otr 4	2022 Otr 1	Otr 2	0	r3	Otr 4	2023
1	1.0			Project Management and Planning	Fri 1/1/21	Fri 3/31/23												
2		1.01		Project Management Plan	Fri 1/1/21	Sat 12/31/22												GTI
3			M1.1	Submit updated Project Management Plan to DOE	Sun 2/28/21	Sun 2/28/21			2/28									
4			M1.2	Complete Kickoff Meeting	Tue 3/30/21	Tue 3/30/21			• 3	3/30								
5			M1.4	Submit Final Technical Report	Fri 3/31/23	Fri 3/31/23												
6	1	1.02		Technology Maturation Plan	Fri 1/1/21	Sat 12/31/22												GTI
7	1		M1.3	Submit technology maturation plan to DOE	Tue 3/30/21	Tue 3/30/21			• 3	3/30								
8	2.0			Preparation, characterization, and optimization of catalyst	Fri 1/1/21	Wed 6/30/21					h							
9			M2.1	Ship > 20 g of catalyst with BET surface area > 100 m2/g shipped	Wed 6/30/21	Wed 6/30/21					6/30							
10	3.0			Sequential membrane reactor testing and optimization	Fri 1/1/21	Wed 6/30/21		H			-							
11			M3.1	Achieve CO2 conversion >20%, DMC selectivity >20%, DMC production rate >200 g_DMC/kg_cat/h at 140-220C and 25-35 bar	Wed 6/30/21	Wed 6/30/21					 6/30 							
12	4.0			Coated catalyst development and catalytic performance evaluation	Thu 7/1/21	Fri 12/31/21												
13		4.01		Coated catalyst development	Thu 7/1/21	Fri 12/31/21							RPI					
14			M4.1	Complete development of coated CZZA-based catalyst with coating layer thickness <0.5 um and pore size between 0.4 and 0.6 nm	Fri 12/31/21	Fri 12/31/21							• 12/31					
15	1	4.02		Catalytic performance evaluation of the coated catalyst	Thu 7/1/21	Thu 12/30/21	1				*		MS&T					
16			M4.2	Achieve CO2 conversion >15% and methanol yield >10% in methanol synthesis at 140-220C and 25-35 bar for the coated CZZA-based catalyst using a fixed bed reactor	Fri 12/31/21	Fri 12/31/21							• 12/31					
17	5.0			Bifunctional membrane reactor testing and optimization	Sat 1/1/22	Fri 9/30/22							1					
18			M5.1	Achieve CO2 conversion >40%, DMC selectivity >50%, DMC production rate >500 g_DMC/kg_cat/h at 140-220C and 25-35 bar	Fri 9/30/22	Fri 9/30/22										• 9	9/30	
19	6.0			Optimization of bifunctional catalyst for membrane reactor testing	Sat 1/1/22	Fri 9/30/22												
20	1	6.01		Optimization of the coated catalyst	Sat 1/1/22	Fri 9/30/22							1) ⁽	RPI	
21	1	6.02		Catalytic performance evaluation of optimized coated catalyst	Sat 1/1/22	Fri 9/30/22							ř				MS&T	
22			M6.1	Achieve CO2 conversion >20% and methanol yield >12% in methanol synthesis at 140-220C and 25-35 bar for the optimized coated CZZA-based catalyst using a fixed bed reactor	Fri 9/30/22	Fri 9/30/22										•	9/30	
23	7.0			Membrane reactor parametric and deactivation tests	Fri 7/1/22	Sat 12/31/22									4			-h
24			M7.1	Complete 100-500 hours continuous testing; achieve steady-state CO2 conversion >50%, DMC selectivity >60%, and DMC production rate >600 g_DMC/kg_cat/h at 140-220C and 25-35 bar	Sat 12/31/22	Sat 12/31/22												• 12/31
25	8.0			Detailed techno-economic and life-cycle analysis	Sat 10/1/22	Sat 12/31/22	1									կա		
26	1		M8.1	Issue Final TEA report with a Technology Gap Analysis	Sat 12/31/22	Sat 12/31/22												• 12/31
27	1		M8.2	Issue Final LCA report	Sat 12/31/22	Sat 12/31/22	1											• 12/31
							1											

Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.