Novel Algae Technology to Utilize CO₂ for Value Added Products

DE-FE0031710

PI - Fred Harrington, PhD
Helios-NRG, LLC

August 15, 2022

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Management Project Review Meeting
August 15 - 19, 2022
Project Overview

• Project Partners:
 • University at Buffalo
 • Linde, Inc
 • Northwestern University
 • Membrane Technology & Research
 • National Carbon Capture Center

• DOE Federal Project Manager: Naomi O’Neil

• Project Funding:
 • Total: $1,734,486 Government: $1,387,588 Cost Share: $346,898

• Project Period: 5/1/19 – 7/31/23
Overall Project Objectives

• Design, build and operate a first-of-a-kind integrated MSC system
• Achieve high performance in outdoors operation
• Conduct NCCC field test on real flue gas
• Develop algae technology for high value products
• Improve dewatering technology
• Perform LCA and TEA
• Achieve projected net CO$_2$ capture cost at commercial scale of <30/ton
Commercial Schematic of Technology

Coal Power Plant

Post FGD flue gas

Algae MSC Process for CO2 capture

Sunlight ~1% CO2

Dewatering

Algae Slurry

HTL + Upgrading

Bio-fuels

Residue

Make-up water & nutrients

Waste water nutrients

Water + Nutrient Recycle

Algae for nutraceuticals

Dewatering

Commercial Extraction

Nutraceuticals

Algae for Animal feed

Dewatering

Feed Blending

Feed Products

Dewatering
Technical Approach/Project Scope

• Capture Technology
 • Novel algae technology converts CO₂ to biomass
 • Capture technology has evolved significantly over the years
 • Stable operation on simulated flue gas with contaminants validated
 • Final test on coal utility flue gas

• DeAqua
 • Stage 1 dewatering
 • Stage 2 dewatering

• High-value Products to Offset Cost of Capture
• LCA and TEA
Technology Background - MSC

• Multi-stage process
• Top lit closed system
• Stable operation
• Predictable, controllable operation
• High productivity & capture efficiency
• Efficient upstream/downstream integration
• Can be tailored to application
 • e.g. Natural gas power plants

Integrated MSC test unit in greenhouse
MSC Evolution

- Needs to operate in natural sunlight
 - Initially validated in non-integrated lab tests - fixed light
 - Integrated system tested in greenhouse - sunlight
 - Integrated operation validated in outdoors tests - sunlight
- Ability of algae to grow in flue gas with high CO₂, acid gases and heavy metals validated
- MSC reactor and system design has evolved significantly leading to better performance

<table>
<thead>
<tr>
<th>MSC Type</th>
<th>Location</th>
<th>Feed Gas</th>
<th>Overall Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CO2</td>
<td>Contaminants</td>
</tr>
<tr>
<td>E</td>
<td>Lab</td>
<td>12%</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>Lab</td>
<td>12%</td>
<td>N/A</td>
</tr>
<tr>
<td>H</td>
<td>GH</td>
<td>12%</td>
<td>SOX/NOX + 5HM</td>
</tr>
<tr>
<td>C</td>
<td>GH</td>
<td>12%</td>
<td>SOX/NOX + 5HM</td>
</tr>
</tbody>
</table>
DeAqua (Dewatering) and Products

- Products represent CO₂ utilization
- Several products possible with a range of market sizes/prices
 - Biofuels
 - Animal feed
 - Nutraceuticals

- Dewatering is a key, enabling technology
- Must be low energy
- As water is removed, rheology changes
- Extent of dewatering dictated by needs of downstream product
Project Progress - MSC

- Integrated 3-stage MSC built - 2nd Gen unit
- Advanced controls enable unattended operation
- Stable GH operation 100+ days
- Various process options mapped
- Outdoors test achieved project targets
- Field test underway at NCCC

<table>
<thead>
<tr>
<th>MSC Type</th>
<th>Location</th>
<th>Sim. Flue Gas Contaminant</th>
<th>Nutr-WW Replacement</th>
<th>Normalized Algae Prod</th>
<th>Avg CO2 Capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>GH-1 Indoor</td>
<td>SOX/NOX + 5HM</td>
<td>50%</td>
<td>92%</td>
<td>59%</td>
</tr>
<tr>
<td>C</td>
<td>Outdoor</td>
<td>N/A</td>
<td>N/A</td>
<td>139%</td>
<td>81%</td>
</tr>
<tr>
<td>C</td>
<td>Outdoor</td>
<td>SOX/NOX + 5HM</td>
<td>80%</td>
<td>141%</td>
<td>76%</td>
</tr>
<tr>
<td>G</td>
<td>Outdoor</td>
<td>N/A</td>
<td>N/A</td>
<td>142%</td>
<td>77%</td>
</tr>
<tr>
<td>FE-0031710 Target</td>
<td>NCCC SSTU Flue Gas</td>
<td>N/A</td>
<td>100%</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

Integrated MSC in outdoors operation
Project Progress – NCCC Field Test

• Field test underway at NCCC
• Inoculum system setup at indoor laboratory
• Bench-scale site to demonstrate performance on actual utility flue gas
• Flue gas from mixture of natural gas and coal-fired operations, post FGD
• Acid gas levels much below Helios in-house tests
Project Progress – Stage 1 DeAqua

<table>
<thead>
<tr>
<th>Project</th>
<th>Conc Ratio</th>
<th>Performance Index</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior work</td>
<td>3-6</td>
<td>0.12-0.37</td>
<td>70%</td>
</tr>
<tr>
<td>Initial Project Target</td>
<td>3-6</td>
<td>1.5</td>
<td>80%</td>
</tr>
<tr>
<td>Current work</td>
<td>20-25</td>
<td>5.0-12.5</td>
<td>80-95%</td>
</tr>
</tbody>
</table>

Conc Ratio = Product Algae Conc

Feed Algae Conc

Perf Index = \(\frac{\text{Conc Ratio}}{\text{Time}} \)

Significant progress in Stage 1 through culture modification:
- Now removes >90% water vs ~70% in prior projects
- Goal of 4X improvement in Perf Index greatly exceeded
- Validated water re-use from dewatering step
Stage 2 DeAqua – Membrane Progress

• Membrane is energy-efficient
• But fouling is a critical challenge

Advantages:
• Surface modification reduces fouling
• Simple process at 23°C, aqueous solutions
• Covalent bonds to achieve long-term stability
• Post-modification of commercial modules possible
Project Progress - DeAqua Membrane

- Surface modification decreases pure water permeance
- But improves the performance in algae dewatering

Setup of M20 Plate and Frame Module

- Membranes being tested in prototype module
Nutraceutical Products From Algae (H-1601)

Increased product from pre-treatment
M = Molecular Weight Markers
1 = extract w/o pretreatment
2 = extract w/ pretreatment

Left Panel – cells separated from media
Middle Panel – product recovered from media
Right Panel – high value product from cell extract
Nutraceutical Progress Summary

Improvements

• Developed two phase extraction for recovery of increased number of products
• Developed pretreatment for enhanced yield
• Species grown on MSC slipstream to decrease flue gas contaminants

H-0326

• Analyzed time course of required induction
• Three high value products verified

H-1601

• Requires no induction
• Product A - Food & pharma applications (No cell extraction required, recovered from media)
• Product B - High value lipids (extract phase 2)
• Product C - Potential for food coloring, pharma applications (extract phase 1)
TEA - Linde Commercial CO₂ Technology

- Evaluate technologies for flue gas injection into algae based on effectiveness and cost
- Linde reviewed portfolio/other SOA systems and proposed an optimal solution
- Based on the optimal recommendation, Linde will evaluate costs of the gas injection system and assist in TEA

<table>
<thead>
<tr>
<th>Linde technology</th>
<th>Highlights</th>
<th>CO₂ Flowrate Range (kg/hr)</th>
<th>Product Image</th>
</tr>
</thead>
</table>
| SOLVOCARB® mobile | - Minimum power consumption
 - Ease of maintenance
 - Low CAPEX and OPEX | 15-45 | ![Product Image](image1) |
| SOLVOCARB® venturi | - Easily retrofitted to existing hydraulic systems
 - Ensures consistent performance while requiring low maintenance | 10-400 | ![Product Image](image2) |
| SOLVOCARB® diffusion hoses (most cost-effective, practical option for pilot testing) | - Very low maintenance
 - Fast and easy installation
 - Ideal for temporary and long-term use | 20-60 (per 40 m of hose) | ![Product Image](image3) |
| SOLVOCARB® reactor | - Most versatile product, working in a full range of temperatures, flowrates, and pressures
 - Suited for inline or sidestream use | 30-2,000 | ![Product Image](image4) |
| SOLVOCARB® in-line reactor | - Eliminates need for static mixer in most cases due to high solubility and reaction rates of pressurized CO₂ | 10-50 | ![Product Image](image5) |
Summary

• Outdoors MSC tests achieved project targets 25 g/m²/d and 80% capture

• Dewatering technology has potential to dewater to varying degrees depending on product requirements

• Utilization of algae for products generates revenue and significantly offset the cost of capture
Plans for future development

Advance MSC CO₂ Capture:
• Implement dynamic process control
• Develop in-ground system - the building block for commercial application
• Integrate MSC with dewatering and operate with high recycle rate
• Utilize municipal WW for purchased nutrient reduction & remediation credits

Advance Utilization:
• Biofuels: Optimize process & test product
• Animal Feed: Develop/test feed applications
• Nutraceuticals: Advance extraction & purification; define products
Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE-0031710.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.