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Project Overview

* Funding
* DOE $2,000,000; Cost Share $510,583

* Overall Project Performance Dates
* 10/01/2021-09/30/2024

* Project Participants
 TAMU: Susie Dai, Bruce McCarl, Stratos Pistikopoulos
* WUSTL: Young-shin Jun, Yinjie Tang, Joshua Yuan
* NCCC at Southern Company: Frank Morten




Overall Project Objectives

The project integrates novel CO- capture/controlled release sorbent with a
breakthrough continuous algal cultivation system, assisted by hydrogel technology to
reduce media cost, fertilize the algae with controlled nutrient delivery.

Objective 1: Project management.

Objective 2: Integrates CO,, bicarbonate, and nutrient capture and delivery to the
low-cost harvest-empowered continuous algal cultivation system with ultra-high
productivity and CO, uptake plus valuable chemical bioproduct production. We also
advance algal strain, sorbent, and hydrogel technologies to enhance carbon capture
and yields of limonene, biomass, and glycogen.

Objective 3: Scale up the sorbent technology and integrate 1t with algal cultivation.

Objective 4: Test the prototype CACCU system at with flue-gas coupled 100 L
photobioreactors (PBRs). AI‘M




Technology Background
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Sustainable co-production of [imonene and biomass by semi-
continuous cultivation
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Record productivities and yields in limonene productivity
Sustainable biomass accumulation at about 1-2g/L/Day for a long period of time.

Machine learning informed semi- continuous cultivation.
Dai and Yuan’s groups@TAMU

Long et al., Nature Communications, 2022, 13:541




Amine Grafted Porous Polymer Network
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Previous results and materials on carbon capture
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Cyanuric acid PPN-151-DETA
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» Physically impregnated amines
» CA - noncovalent anchoring sites for alkylamines
Working capacity: 5 wt% (dry), 18 wt% (wet)
Regenerative energy: 82.8 kd/mol CO, (MEA, 185 kJ/mol CO,)

Low cost, large scale preparation
Adv. Sustain. Syst., 2019, 3, 1900051
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Mineral-seeded mineral hydrogel composites for nutrient delivery
and pH control Ca-Alg/CaP
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Jun and Tang'’s groups@WUSTL

\ im, D and Jun, Y.-S., Green Chemistry 2018, 20 (2), 534-543.
Calcium phosphate, calcium carbonate, or ammonia-containing mineral seeds formed during
alginate crosslinking.

When placed into calcium phosphate/carbonate supersaturated solution, mineral seeds grow,
collecting and incorporating phosphate, bicarbonate, and ammonia-containing minerals. ATM




Translating process models into a process
systems engineering framework at scale Experimental Data
involves some critical steps Process parameters [3.1, 3.2]

1) Accurate modeling of process dynamics l
. . . Experimental Data
2) Reduced order approximation of nonlinear Strain specific [2.3]

d}-'namlcs Process parameters [2.1-2.3,2.5]

Process o] System
Modeling Modeling

Surrogate linear models can tame computational complexity Il ! I

Model Process Scenario

Linear programs can provide certificates of optimality Validation . Analvsi
pt. 1alysis

LCA/TEA

3) Design of control scheme [2.41—2.423] [3.3] [4.2: 4.3]

4) Formulation of a network design as a mixed
integer program (MIP)

MIPs can be optimized to multiple objectives
Tang, Pistikopoulos and McCarl's

groups@ TAMU&WUSTL

Network decisions can be modeled as binary variables

Scheduling can be integrated (multiscale approach)
5) Integration of lifecycle tools

OpenLCA data integration with MIP framework (MIP)




Technical Approach/Project Scope

Removal of Toxic
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Progress

* \We have successfully engineered Synechococcus
UTEX 2973 to produce limonene
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Long et al., Nature Communications, 2022, 13:541




Pull strategy to increase carbon “%>— 36— 20

flux towards limonene RUBP N
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P and N recovery using mineral-hydrogel composites

P and N recovery efficiency of
mineral-hydrogel composites

Ammonium Recovery capacity (mg/g)

* Dry weight of Ca/Mg-
Alg-CaP, Stru: 0.082 g

@24 hr
042 hr

P recovery (%)

Mineral hydrogel

La-magnetic biochar

As based Bentonite

134.67 (24hr)
232.52 (48hr)

101.67

5.7

This study
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Struvite can recover phosphate and ammonium
simultaneously

With a longer time, we can form more CaP and struvite and
recover P and N from nutrient-rich resources.

Homogeneous precipitation of these minerals without
hydrogels is lower than 10%

Jun’s group@WUSTL
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Integration of hydrogel in algal system
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Fast growth in optimal PBR: 41 °C, 1500
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Strength of
hydrogel

Integrated Modellng
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Build-in parameters
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dXA _ Hmax ASC02 I N

Jun, Tang and Yuan’s
groups@WUSTL
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HmaxA = A e~Ea/RT (Eq 5). (Growth rate)

The light function I can be described as:
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Light Scope

Light Harvesting

Light Intensity Controller

Microalgae_PID_loops

Total Plot

€02 Set Point

Microakae
i Products
Nitrogen
Substrate
Carbondioxide
Oxygen

Algal Growth with
Simulink Simulation




System modeling

Modeling components
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Pistikopoulos and McCarl's
groups@ TAMU&WUSTL




Future Plans

Further strain engineering to improve photosynthesis
efficiency, biomass and high value product yield

Optimization of sorbents by covalently attaching amines

Examine a high dose of composites to recover N and P
and leave the treated water to have low total N and P.

Nutrient (N, P) tests for algal growth with struvite
hydrogels

System integration and outdoor testing




Future Plans

» Multiscale scenario Analysis:
to identify synergies between e win matiss s
disparate value chains, find
optimal network
configuration, and determine
potential bottlenecks

* Integrate ML model and -
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Dai

TAMU Plant Pathology &
Microbiology
Microbial engineering and
development of continuous algal
cultivation platform

Pistikopoulos

Chemical Engineering
System modeling and TEA
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