
Inorganic Membrane-based Reactive Separation and Reactant Recycle for Direct Synthesis of Dimethyl Carbonate (DMC) DE-SC0019556

Dr. Richard J. Ciora, Jr.

Media and Process Technology Inc. 1155 William Pitt Way, Pittsburgh, PA 15238 412-292-4057, rciora@mediaandprocess.com

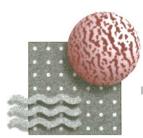
Media and Process Technology Inc.

Project Overview

<u>Program:</u> Phase II Small Business Innovation Research (SBIR)

<u>Funding:</u> Overall project budget: \$1,050,000 (including DCA funding).

Overall Project Performance Dates: March 19, 2020 - March 18, 2023 (36 months)

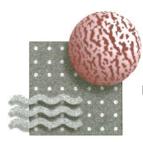

Project Participants:

- Media and Process Technology...Membrane manufacturer/supplier and technology developer
- TechOpp Consulting, Inc....Discretionary Commercialization Assistance provider (POC: Mary Ann S. Bonadeo)

Overall Phase II Project Objectives:

Demonstrate the proposed inorganic membrane-based DMC Production process at pilot scale at the relevant operating conditions:

- (i) Improved Dimethyl Carbonate (DMC) conversion in a membrane reactor configuration
- (ii) Improved DMC product recovery in a downstream membrane nanofilter.

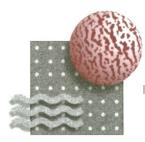

Motivation: Carbon Capture and <u>Reutilization</u>

Carbon Capture and Reutilization

✓ Effective means to overcome carbon storage problems.
 ✓ Green alternative to petroleum sources of fine chemicals

Focus: Dimethyl Carbonate

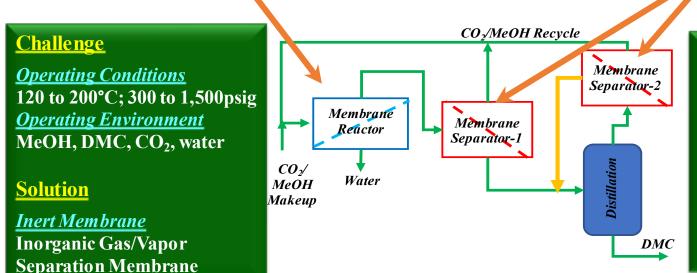
- \checkmark Green production (CO₂ and biomass MeOH)
- ✓ Low toxicity
- ✓ Low viscosity
- ✓ High solvent power


Synthesis: Dimethyl Carbonate (DMC)

	route	description	reactions
	I	methanol phosgenation	$COC1_2 + 2 CH_1OH \rightarrow (CH_1O)_2CO^4 + 2HC1$
*	Π	oxidative carbonylation of methanol (Eni)	$CO + 2CH_3OH + O_2 \rightarrow (CH_3O)_2CO^a + H_2O$
*	Ш	oxidative carbonylation of methanol via methyl nitrite (Ube)	$N_2O_3 + 2CH_3OH \rightarrow 2CH_3ONO + H_2O$ 2CH ₃ ONO + CO → (CH ₃ O) ₂ CO ^a + NO
*	IV	ethylene carbonate transesterification (Asahi)	$(CH_2)_2O + CO_2 \rightarrow C_2H_4O$ $C_2H_4O + 2CH_3OH \rightarrow (CH_3O)_2CO^a + (CH_2OH)_2$
	V	urea transesterification	$2NH_3 + CO_2 + (NH_2)_2CO + H_2O$
			$(NH_2)_2CO + CH_3OH \rightarrow CH_3OCONH_2 + NH_3$
			$CH_3OCONH_2 + CH_3OH \rightarrow (CH_3O)_2CO^a + NH_3$
	VI	direct synthesis from $\rm CO_2$	$CO_2 + 2CH_3OH \rightarrow (CH_3O)_2CO^a + H_2O$

Technology Background

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678


Solution: Membranes in DMC Synthesis and Recovery

Membrane Reactor: In-situ Dehydration

- 1. <u>Operation Mode:</u> Pervaporation/Vapor permeation.
- 2. <u>Equilibrium Shift:</u> Increase DMC yield via in-situ water removal
- 3. <u>Increased Yield:</u> Reduce downstream separation and recycle requirements.

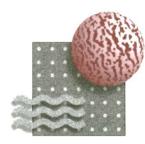
Membrane Separator: MeOH/DMC

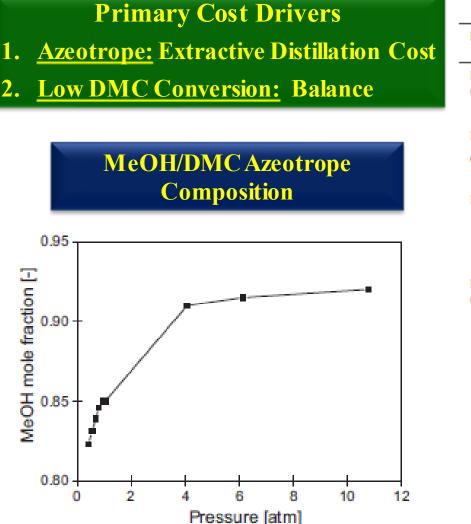
- 1. **Operation Mode:** Nanofiltration
- 2. <u>Azeotrope Break:</u> Remove MeOH (and CO₂) from DMC.
- 3. <u>Reduced Energy and Cost:</u> Eliminate multiple column azeotrope distillation.

<u>Challenge</u>

<u>Operating Conditions</u> 80 to 150°C; 300 to 1,500psig <u>Operating Environment</u> MeOH, DMC, CO₂, water

Solution


<u>Inert Membrane</u> Inorganic Nanofilter


Reaction. In-situ Dehydration in Direct Synthesis

MR Configuration

Dehydration Approach	DMC Yield Impact	Advantages	eliminates these problems Barriers/Problems
Organic Dehydrating Agent	10 to >95%	 a. Highest DMC yields observed. b. Continuous processing capable and demonstrated on bench. c. Very high reaction rates demonstrated in continuous versus "batch" reactors. d. High selectivity to DMC for some selected systems. 	 The dehydrant yields a. Byproduct formation due to deh drant degradation. b. Catalyst deactivation. c. Limited upper operating term erature (<140°C). d. Additional separation and regeneration equipment. e. Dehydrant loss; hence makeup chemicals required.
Inorganic Adsorbent	<10 to ~40%	"dehydration" are installed/operational (corn	 a. Low H₂O adsorbent capacity at reaction temperatures. b. Discontinuous highly unfavorable cyclic operation due to mismatch of the reaction and adsorption/regeneration temperatures. c. Long reactor residence times.
Membrane Reactor	Up to ~10%.	 a. No byproduct formation. >99% selectivity b. No operating temperature limit in the expected range. c. Continuous processing capable. d. No chemical makeup required. e. No catalyst deactivation 	 a. Yields above 10% have not been laboratory demonstrated. <u>Very low-quality membranes have been tested.</u> b. Limited range of membrane candidates; CO₂ and MeOH are good plasticizers; T > 120C; P>>300psig

Separation: Nanofiltration for MeOH/DMC separation

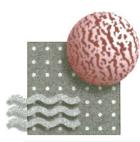
Equipment Impact

Equipment	Code	Key specifi- cations	Height [m]	Diameter [m]
Distillation	Dist-01	50 stages	27,5	3,16
columns	Dist-02	79 stages	42.0	2,92
	Dist-03	67 stages	36.0	2.00
	Dist-04	49 stages	27.0	1,58
Flash drum			10.6	3,32
Compressors	C-01	1530 kW	-	-
	C-02	30 kW	-	-
Pumps	P-01	4 kW	-	-
	P-02	133 kW	-	-
	P-03	28 kW	-	-
	P-04	8 kW	-	-
	P-05	13 kW	-	-
Heat	Reboiler Dist-01	471 m ²	-	-
exchangers	Reboiler Dist-02	279 m ²	-	-
	Reboiler Dist-03	104 m ²	-	-
	Reboiler Dist-04	142 m ²	-	-
	Condenser Dist-01	1861 m ²	-	-
	Condenser Dist-02	175 m ²	-	-
	Condenser Dist-03	113 m ²	-	-
	Condenser Dist-04	326 m ²	-	-
	He-01	600 m ²	-	-
	He-02	10 m ²	-	-
	He-03	99 m ²	-	-
	He-04	92 m ²	-	-
	He-05	9 m ²	-	-
	He-06	41 m ²	-	-
	He-07	15m ²	-	-
	He-08	5 m ²	-	-
	He-08	5 m ²	-	-

MPT Membrane Technology

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Advanced Inorganic Molecular Sieving Membranes

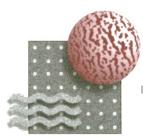

MPT 57-tube Bundle (Carbon Molecular Sieve Membrane)

Package into Multiple Tube Bundle

Project Technical Scope and Approach

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

M&P TECHNOLOGY Phase II Program


Phase II Project: <u>Multiple Tube Bundle Scaleup at Target Conditions</u>

Primary Technical Goal

Process Scaleup at Target Operating Conditions

Demonstrate multiple tube membrane bundles in MR and NF operation at the target operating conditions.

Objective	Target/Goal	Yr
#1	Membrane Reactor (MR) Testing with Full length single tube membrane testing at up to 1,500 psig and 200°C	1
#2	Nanofiltration (NF) Testing with Full length single tube membrane testing at up to 1,500 psig and 200°C	1
#3	Multiple tube bundle fabrication (MR and NF membranes) for testing under target operating conditions.	1
#4	Multiple Tube Bundle Demonstration Unit Construction Target is ~0.1 to 1 lb/hr DMC production.	2
#5	Operation of the Multiple Tube Bundle Demonstration Unit in MR & NF modes	2
#6, #7, #8	Optimize and update process flow diagram and TEA. Continue commercialization development.	1,2

M&P TECHNOLOGY Phase II Program

Phase II Project Task Plan

					J	lear	·I									Yea	r II							Ye	ar I	Π		
Month	h 1	2	3	4	5 (67	8	9	10	11 ⁻	12 [·]	13 1	14 1	5 16	17	18 1	9 20	21	22 2	23 24	25	26 2	27 28	3 29	30 3	31 32	33 34	4 35 36
Task 1. Prepare CMS Membranes for Phase II Program							MI MI	II-1 II-2																				
Program.	╪	<u> </u>	_		_		-																					┢┿┙
Task 2. Conduct Laboratory-Scale Single TubeTesting at the Relevant Operating Conditions																												
<mark>Subtask 2a.</mark> Laboratory System Upgrade and Shakedown							MII MII																					
<mark>Subtask 2b.</mark> Laboratory Scale Membrane Reactor Testing				MII-	4				MII-	.5																	MII-	6
Subtask 2c. Laboratory Scale Nanofiltration Membrane Testing			N	/111-8	8				MII	-9	•												MI	I-11		M	[I-10	
Task 3. CMS Membrane Bundle Fabrication	Ι					MII	13																	I-11 I-12		8		
Task 4. Pilot Unit Construction and Shakedown						WIII	-15		MII-	14	7																	
Task 5. Pilot Scale MR and NF with Multiple Tube Membrane Bundles											Î																II-15 II-16	
Task 6. Update Process Flow Diagram and Process Economics; Prepare a Commercialization Package for Potential Industrial Partners	n																				MII	-17			1	MII-1	8 MII	-19

Project Progress and Status

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

Task 1. Membrane Preparation

<u>Phase II Milestones</u>

MII-01. MR Membrane Fabrication (30") (Target: >30 on-spec tubes; $He/N_2 > 150$)

Membrane	Performance 250°C						
ID	Не	He/N ₂					
[-]	[GPU]	[-]					
CMS-30Rg-2001	426	217					
CMS-30Rg-2002	303	292					
CMS-30Rg-2014	414	170					
CMS-30Rg-2018	346	158					
CMS-30Rg-2019	422	285					
CMS-30Rg-2020	112	216					
CMS-30Rg-2021	281	189					
CMS-30Rg-2022	388	248					
CMS-30Rg-2027	232	355					
CMS-30Rg-2030	342	162					
CMS-30Rg-2031	423	227					
CMS-30Rg-2034	403	153					
CMS-30Rg-2036	443	273					
CMS-30Rg-2037	399	325					
CMS-30Rg-2038	261	338					
CMS-30Rg-2040	361	190					
CMS-30Rg-2041	299	257					
CMS-30Rg-2043	564	369					
CMS-30Rg-2044	303	280					
CMS-30Rg-2045	542	431					
CMS-30Rg-2046	231	564					
CMS-30Rg-2047	524	183					

Membrane	Performa	nce 250°C	
ID	Не	He/N ₂	
[-]	[GPU]	[-]	
CMS-30Rg-163	382	866	
CMS-30Rg-164	432	319	
CMS-30Rg-168	422	446	
CMS-30Rg-169	428	614	
CMS-30Rg-188	370	347	Vana
CMS-30Rg-189	399	188	Vapo
CMS-30Rg-196	445	215	
CMS-30Rg-139	460	188	
CMS-30Rg-193	556	174	Wat
CMS-30Rg-199	445	412	
CMS-30Rg-202	339	112	MeO
CMS-30Rg-203	589	209	DM
CMS-30Rg-205	334	338	
CMS-30Rg-208	375	336	
CMS-30Rg-211	395	307	
CMS-30Rg-212	456	257	
CMS-30Rg-214	501	479	
CMS 30Rg-215	382	213	_
CMS-30Rg-217	445	234	
MR	Farget :	He/N	2>150

MR Water Separation Typical Selectivities

Vapor	Kinetic Diameter [Å]	Permeance [GPU]	Selectivity [H ₂ O/x]
Water	2.6	~80% He Permeance	-
MeOH	3.8 to 4.1	0.55 to 1.0	>300
DMC	>4.6 to 6.3	0.26 to 0.54	>500

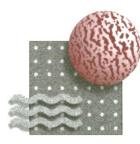
Operating Conditions 160°C; 350 to 450psig

Task 1. Membrane Preparation

<u>Phase II Milestones</u>

MII-02. NF Membrane Fabrication (30"): Target: >30 on-spec tubes; >85% DMC rejection)

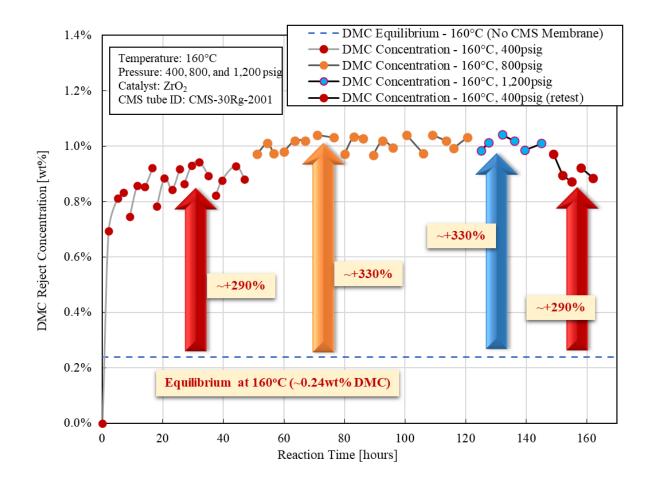
1st Generation NF Membranes

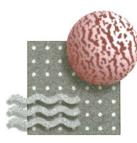

Membrane	250°C	Total Flux	DMC	Membrane	250°C	Total Flux	DMC
ID	N ₂ /SF ₆	[kg/m ² /hr]	Rejection	ID	N ₂ /SF ₆	[kg/m ² /hr]	Rejection
182NF	81	0.27	97.2%	135NF	46	N/A	N/A
183NF	85	0.23	96.7%	141NF	17	0.16	75.8%
186NF	341	0.31	93.3%	142NF	31	0.39	87.8%
191NF	80	0.44	97.1%	143NF	14	0.21	89.3%
199NF	156	0.51	97.7%	144NF	16	0.28	95.4%
203NF	180	0.44	98.7%	145NF	24	0.13	90.9%
205NF	38	N/A	N/A	146NF	8	0.18	68.4%
206NF	161	0.44	94.3%	147NF	21	0.16	93.1%
207NF	155	0.39	96.6%	148NF	11	0.21	94.9%
208NF	63	0.33	98.8%	149NF	81	0.57	87.1%
209NF	35	0.29	98.0%	150NF	10	0.12	84.8%
210NF	53	0.39	98.9%	151NF	20	0.16	93.9%
213NF	204	0.41	97.6%	153NF	14	0.12	81.7%
215NF	38	0.45	97.7%	154NF	16	0.14	84.6%
059NF	11	0.17	83.1%	162NF	10	0.20	79.5%
067NF	18	0.04	87.3%	158NF	7	0.11	93.1%
068NF	19	0.05	81.8%	166NF	18	N/A	N/A
070NF	35	0.08	83.8%	171NF	66	N/A	N/A
111NF	23	0.25	84.1%	172NF	19	N/A	N/A
119NF	18	0.21	47.4%	173NF	22	N/A	N/A
120NF	33	0.12	87.7%	175NF	20	0.27	93.1%
122NF	16	0.19	66.7%	178NF	38	0.34	89.8%
124NF	92	N/A	N/A	179NF	38	0.36	86.4%
129NF	30	N/A	N/A	184NF	0	0.19	94.1%
130NF	67	N/A	N/A	185NF	0	0.22	96.1%
131NF	82	N/A	N/A	197NF	0	N/A	N/A
134NF	11	N/A	N/A				

2nd Generation Membranes

8- to 10-fold Increase in Flux

		30% DMC/Methanol									
		Pre-Bundle Performance									
Membrane			Total	DMC							
ID	Temp	ТМР	Flux	Rejection							
[#]	[°C]	[psig]	[kg/m ² /hr]	[%]							
2nd General	tion NF M	embrane									
5NF	160	300	7.10	83.4							
10NF	160		2.80	96.5							
16NF	160	204	6.90	80.7							
23NF	160	300	10.20	81.5							
1st Generati	on NF Me	mbrane									
144NF	160	650	0.28	95.4							
184NF	160		0.19	94.1							

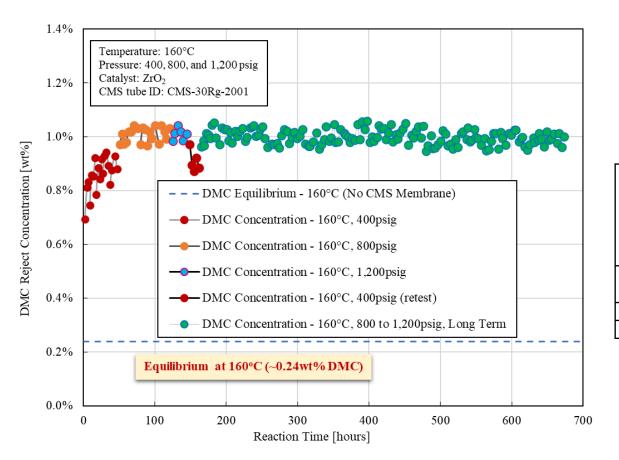

NF Target: >85% DMC Rejection



Task 2. MR Membrane Performance Testing

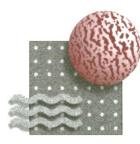
<u>Phase II Milestones</u>

MII-03 to -05. MR Membrane Performance Verification at Target Conditions (Single Tube)



Task 2. MR Membrane Performance Testing

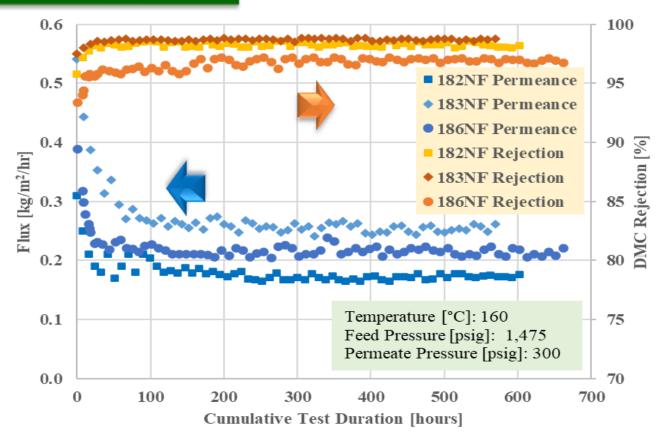
<u>Phase II Milestones</u>

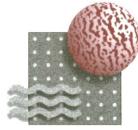

MII-06. MR Membrane Long Term Performance Challenge Testing (Single Tube)

Performance Stability Verification

Pure component He and N₂ permeance (250°C, 50psig) of the CMS-30Rg-2002 membrane before and after ca. 700 hours of membrane reactor performance stability testing.

Part ID	He	N ₂	He/N ₂
[-]	[GPU]	[GPU]	[-]
Pre-MR	426	1.96	217
Post-MR	397	1.45	274

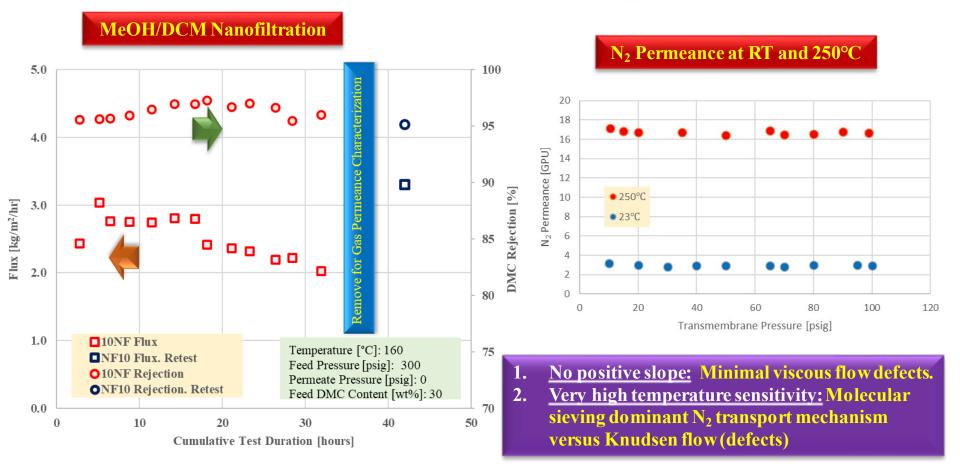



Task 2. NF Membrane Performance Testing

<u>Phase II Milestones</u>

MII-07 to 10. NF Membrane Performance Verification; Long Term Stability (Single Tube)

1st Generation NF Membranes



Task 2. NF Membrane Performance Testing

Phase II Milestones

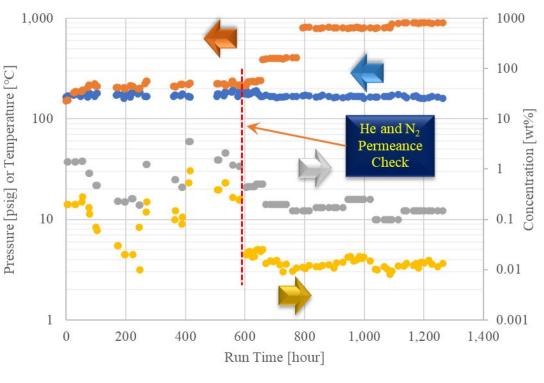
MII-07 to 10. NF Membrane Performance at Target Conditions; Long Term Stability (Single Tube)

2nd Generation NF Membranes

Task 3. Multiple Tube Bundle Fabrication

Phase II Milestones

MII-11 and -12. Complete Fabrication of Multiple Tube MR and NF Bundles



Task 5. Multiple Tube Bundle Performance: MR Operating Conditions

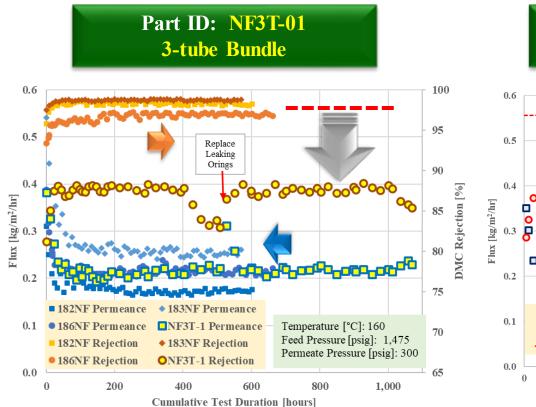
Phase II Milestones

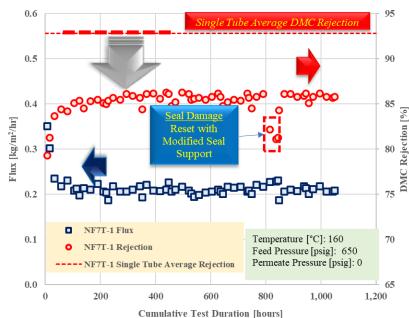
MII-15. MR Membrane Performance and Long Term Stability (Multiple Tube Bundles) Target: >3 to >6 months of service; performance at 80% of the single tube

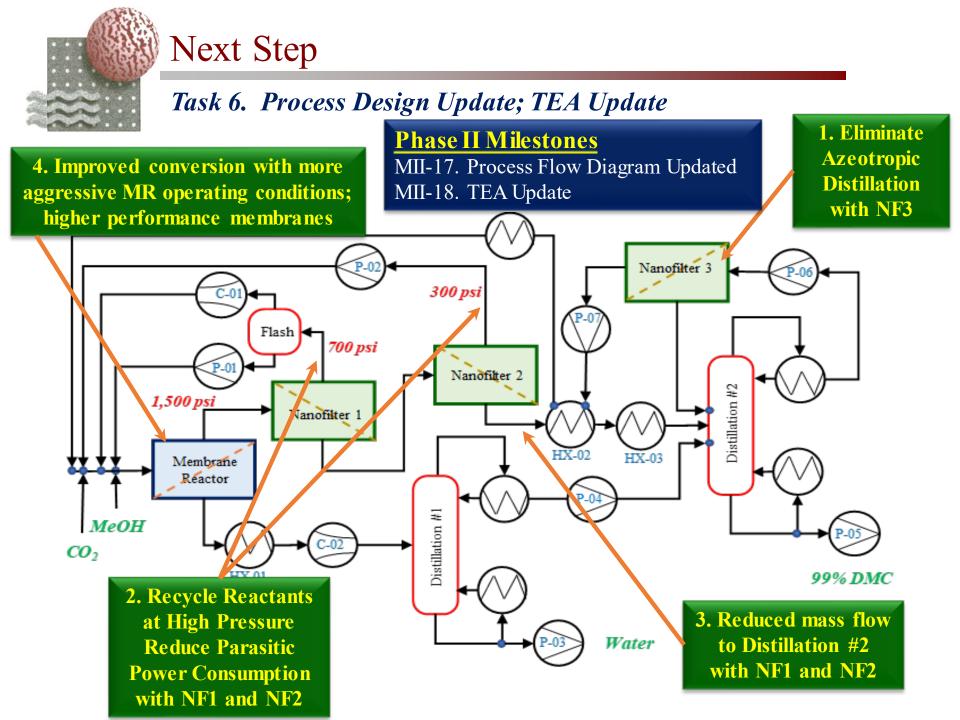
Part ID: MR3T-02 3-tube Bundle

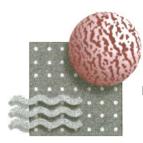
Performance Stability Verification

He and N ₂ QC data for CMS membranes single
tubes and the 3-tube membrane bundle MR3T-02
as-prepared and following ca. 600 hours of MR
service testing. Test conditions: 250°C and 50psig.


service testing. Test conditions. 250 C and 50psig.			
Part ID	He	N ₂	He/N ₂
[-]	[GPU	[GPU]	[-]
]		
CMS-70 [2040]	360	1.76	205
CMS-82 [2001]	453	2.15	211
CMS-93 [2031]	425	2.21	193
MR3T-02 (as-prepared)	399	1.94	206
MR3T-02 (~600 hours MR service)	436	1.5	296


Task 5. Multiple Tube Bundle Performance: MR Operating Conditions


Phase II Milestones


MII-16. NF Membrane Performance and Long Term Stability (Multiple Tube Bundles) Target: >3 to >6 months service; performance within 80% of single tube

Part ID: NF7T-01 7-tube Bundle

M&P TECHNOLOGY Summary

Summary of MPT Process Impacts and Advantages

MPT Ceramic Membrane Enhanced DMC Production Process Impacts, Advantages, Key Takeaway

MPT Process Features	Impacts and Advantages	
Membrane Reactor subsystem operates at high temperature and pressure.	Enhanced methanol conversion	
	Enhanced DMC concentration	
	Reduced "loads" on downstream unit operations	
NF subsystem operates at the MR	Direct integration with the MR without the need	
conditions (T and P)	for thermal or pressure cycling	
	Reagent recycle at reactor operating T and P	
	Further "load" reduction on downstream units	
NF subsystem shows excellent DMC	Improved reactant and product separation	
rejection	 Azeotropic distillation eliminated 	
NF subsystem permeate operated at	> Substantially reduced CO_2 recycle	
elevated pressures	recompression costs.	
Azeotropic Distillation eliminated	 Significantly reduce capital cost and energy 	
	consumption.	

Questions?

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238-1678

Appendix

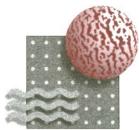
Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238-1678

Poly-generation: Advanced Inorganic Membranes

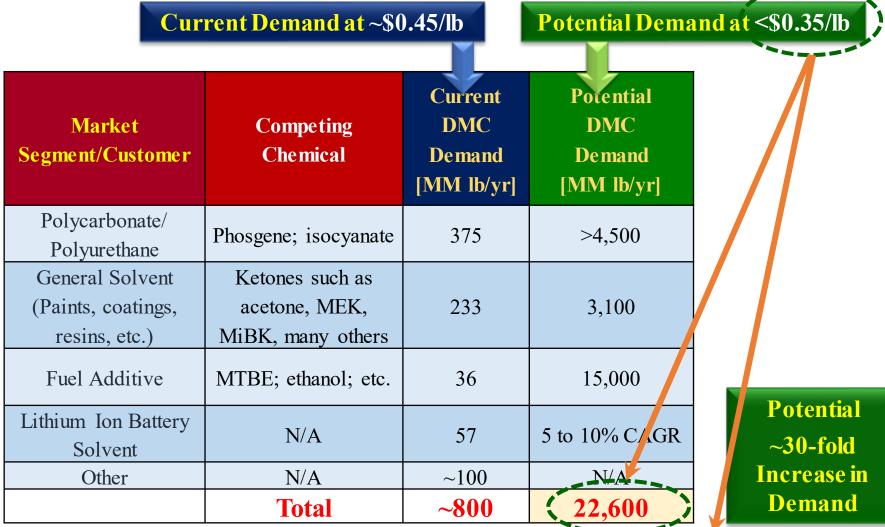
Project Team

Team Member | CV/Capabilities

Responsibilities

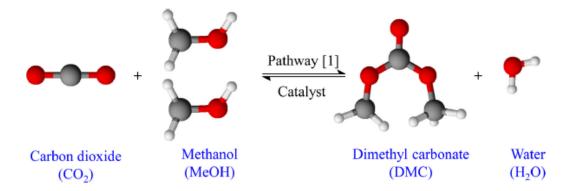

MPT has nearly 30 years of experience in
inorganic membrane materials and process
development in high temperature, high pressure,
aggressvive chemicals gas and liquid
separations. Since 2003 MPT has been a
commercial manufacturer and supplier of
ceramic membrane technology into a wide range
of ultrafiltration applications.

Project management; membrane bundle and housing development; performance testing; TEA update



TechOpp Consulting has over 10 years of experience in transitioning new technologies from ideas to products by targeting the right opportunities, securing funding, establishing partnerships, and engaging with the customer to understand the application requirements.

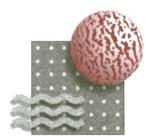
Discretionary Commercialization Assistance provider


Markets: DMC Current and Potential Demand

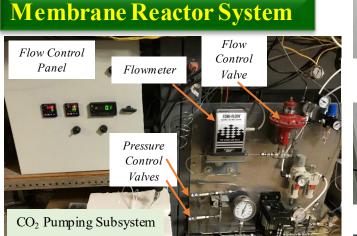
~\$6,000MM/yr

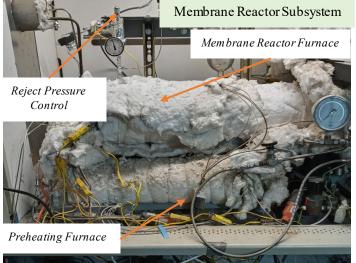
~\$300MM/yr

Direct Synthesis of DMC: Advantages and Challenges

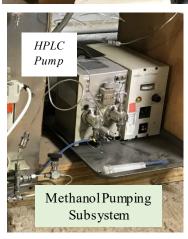


Advantages of Direct Synthesis of DMC

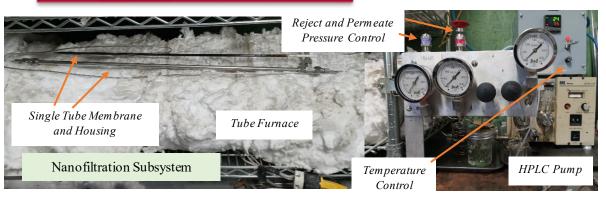

- **1.** <u>Green Process</u>: Produced from CO₂ and biomass derived methanol
- 2. <u>Non-hazardous:</u> Reactants are non-hazardous versus other synthetic pathways.
- 3. <u>Safety:</u> Considerably safer operating conditions than commercial processes.


Challenges of Direct Synthesis of DMC

- 1. <u>Equilibrium limitation</u>: Conversions to DMC limited to under 1 to 3%
- 2. <u>Methanol/DMC Azeotrope:</u> Multiple column azeotropic distillation required.
- **3.** <u>Energy intensive</u>: Combination of these problems drives production cost



Task 4. System Construction and Testing



Phase II Milestones MII-11 to 14. System upgrade/testing. 200°C; 1,500psig 7-tube Bundles

Nanofiltration System

End