A highly efficient microalgae-based carbon sequestration system to reduce CO₂ emission from power plant flue gas

DE-FE0031914

Feng Chen, Yantao Li, and Russell Hill, University of Maryland Center for Environmental Science;

Robert Mroz, HY-TEK Bio, LLC;

Troy Hawkins, Sudhanya Banerjee, Udayan Singh, Argonne National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting Session "Capture from Industrial Sources" August 15, 2022

Project Overview

- Funding
 - DOE: \$3,000,000 and Cost Share: \$750,000
- Overall Project Performance Dates:
 - Sep. 2020 to Sep. 2023
- Project Participants:
 - Yantao Li, Feng Chen, Russell Hill, University of Maryland Center for Environmental Science;
 - Robert Mroz, HY-TEK Bio, LLC;
 - Troy Hawkins, Sudhanya Banerjee, Udayan Singh, Argonne National Lab
 - DOE NETL Program Manager: Lei Hong (From Jan. 2022), Kyle Smith (May- Dec. 2021), Katharina Daniels Sep. 2020 to Apr. 2021)

Project Overview

- Overall Project Objectives

The objective of this project is to harness the power of photosynthetic microalgae to maintain a high-pH, high-alkalinity microalgal culture to create a carbon-negative system for carbon dioxide (CO_2) conversion to value-added products from power plant flue gas.

Technology Background

Williams, M.E. (July 31, 2016). Carbon-Fixing Reactions of Photosynthesis. The Plant Cell, doi/10.1105/tpc.116.tt0716.

1 g algal biomass produced will consume 1.83 g CO_2 .

Algal biomass has multiple applications.

Technology Background

Microalgae Driven Carbon Capture

Technology Background: Proposed Technology Readiness Level

Technical Approach/Project Scope

Bench-scale development of a saltwater and a freshwater algal system (UMCES)

- Subtask 2.1; 3.1; 4.1: Saltwater algal carbon sequestration system (Li and Hill)
- Subtask 2.2; 3.1; 4.1: Freshwater algal carbon sequestration (Chen and Hill)

Slipstream testing of the algal carbon sequestration system (HY-TEK Bio)

- Subtask 2.3; 3.2; 4.2: Slipstream test on strains IMET1 and HTB1 at 500 L (Mroz)
- Subtask 3.3; 4.3: Slipstream test on algal strains IMET1 and HTB1 at 6,800 L (Mroz)

Development of TEA and LCA models to evaluate and guide (Argonne)

Subtask 2.4; 3.4; 4.4: Perform TEA and LCA analysis (Hawkins and Banerjee)

Progress- Budget Period 1 (Finished with 3-month NCTE)

Subtask 2.1 - Develop a saltwater algal carbon sequestration system at lab scale *Milestone 2.1* Achieve >90% mitigation efficiency of each algae at lab scale. M15

Subtask 2.2 - Develop a freshwater algal carbon sequestration system at lab scale Milestone 2.2 Achieve >90% mitigation efficiency of each algae at lab scale. M15

Subtask 2.3 – Initial slipstream testing at 500-L scale

Milestone 2.3 Achieve >90% mitigation efficiency at 500-L scale. M15

Subtask 2.4 - Develop the frameworks for the TEA and LCA models *Milestone 2.4* Develop frameworks for the TEA and LCA models. M15

HY-TEK Bio's Facility at the Back River Waste Water Treatment Plant

Current HTB site in operation for more than 8yrs

Progress- BP1 500-L scale test

Progress- BP1 500-L scale test

Progress- BP1 LCA/TEA

Progress- Budget Period 2 (in progress 6month NCTE)

Subtask 3.1 - Optimize algal carbon sequestration system with a marine and freshwater microalga

Milestone 3.1 Achieve 2 g/L biomass concentration and extra 20% carbon capture in lab cultures. M24

Subtask 3.2 - Slipstream test at 500 L

Milestone 3.2 Achieve 10-15 g/m²/day biomass productivity concentration and extra 20% carbon capture at 500 L. M30

Progress- BP 2 Lab Nannochloropsis culture

Progress- BP 2 Lab Scenedesmus culture

Growth of S. obliquus HTB1 in air and 10% CO₂

Light: 60 µmol/m2/s (day 1-11), 90 µmol/m2/s (day 11-14) Temperature: 23-25 °C

Progress- BP 2 Lab Scenedesmus culture

Growth of S. obliquus HTB1 in air and 10% CO₂

10% CO₂ to air switch point

Progress- BP2 Lab Microbial Analysis

Free-living bacteria in Scenedesmus HTB1 culture

Progress- Budget Period 2

Subtask 3.3 – Initial slipstream testing at 6,800 L scale

Milestone 3.3 Achieve >90% mitigation efficiency at 6,800 L. M30

Subtask 3.4 - Use the TEA and LCA models to perform screening analysis and contribution analysis

Milestone 3.4 Presentation on preliminary findings of the TEA and LCA models. M30

Progress- Budget Period 2 Slipstream test 500 L

Progress- Budget Period 2 Slipstream test 6,800 L

Looking up into a 6,800L bioreactor with 3 LED Grow Light tubes.

Progress- Budget Period 2 LCA/TEA

Technology Readiness Level at present

Plans for future work- BP2 and BP3

1) Bench-scale optimization of the laboratory and 500-L algal carbon sequestration system (>20 g/m²/Day, and extra 20-50% carbon precipitation);

2) Use an iterative modification and validation process to scale up slipstream testing of the algal carbon sequestration system at a 6,800-L scale on power plant flue gas.

3) Perform a LCA and TEA to determine the environmental sustainability and economic viability of the proposed technology and the market penetration possibilities.

Summary

- Our freshwater *Scenedesmus* and seawater *Nannochloropsis* systems are able to capture CO_2 at >90% efficiency when grown with flue gas containing 6% or 10% CO_2 .
- Algae capture CO₂ in the form of algae biomass and result in carbon precipitation. Urease-producing bacteria may help precipitate more carbon.
- Working on scaling up tests and LCA/TEA analysis. Preliminary analysis shows our technology is a promising carbon capture route.

Plans for future work: Micro-/Nano-bubbles

With Dr. Wen Zhang at NJIT

Appendix

These slides will not be discussed during the presentation but are mandatory.

A	gae
---	-----

System Performance Data

		Measured/Current	Projected/Target				
	Units	Performance	Performance				
Algae Characteristics							
Proposed Algae Strain	-	Nannochloropsis oceanica IMET1	and Scenedesmus HTB1				
Lower Heating Value @ 25°C	kJ/kg (dry)	15					
Lipid Content ¹	wt%	20-51					
Protein Content	wt%	18-42					
Carbohydrate Content	wt%	8-30					
Algae Cultivation		I					
Method of Cultivation	-	PBR					
Water Source		Seawater for Nannochloropsis and freshwater for Scenedesmus	Seawater for Nannochloropsis and freshwater for Scenedesmus				
Pond or PBR Surface Area	m2	0.19 (500 L)	1.16 (6,800 L)				
Pond Depth or PBR Width	cm	290	586				
PBR Type ²	-	column airlift	column airlift				
Pond or PBR Volume	L	500	6800				
Nutrient Source - N	-	NO_3^- or urea	NO ₃ ⁻ or urea or sterilized chicken manure				
Nutrient Source - P	-	PO ₄ ³⁻	PO ₄ ³⁻ or sterilized chicken manure				
Scale of Operation – CO ₂ delivered ³	kg/hr	0.04	12-40				
CO ₂ Utilization							
CO ₂ Source ⁴	-	Commercial CO2 and simulated flue gas	Flue gas from power plant engine or boiler (BRWWTP)				
CO ₂ Content of Source Gas	mol%	6-8 (boiler) 10-12 (engine)	6-8 (boiler) 10-12 (engine)				
Impurity or contaminant processing requirements ⁵	-	clean source gas with no processing	clean source gas with no processing				
CO ₂ Processing Requirements ⁶	-	no processing	no processing				
CO ₂ Concentration after Processing ⁷	mol or wt%	6-8 (boiler) 10-12 (engine)	6-8 (boiler) 10-12 (engine)				
Delivery Method to Pond/PBR ⁸	-	Gas sparger	Gas sparger				
CO ₂ Pond/PBR Retention ⁹	%	90	>90				
Algae Productivity ¹⁰							
Peak Productivity	g/m²/day	20	30				
Annual Average Productivity	g/m²/day	15	>20				
Projected Finished Products ¹¹		(Market Value)	(Market Size)				
Product #1: Biodiesel	-	\$3/gallon	\$100 B				
Product #2: lutein and zeaxanthin	-	\$2,000/kg	\$275 M				

Organization Chart

No.	/Tasks	/Subtasks and PIs responsible for the task	Teams responsible			
1	Project Management and Planning	 Project Management Plan (<i>All PIs</i>) Technology Maturation Plan (<i>All PIs</i>) 	UMCES is the lead on this task.			
2	Bench-scale development of a saltwater and a freshwater system	 Saltwater algal carbon sequestration system (<i>Li and Hill, UMCES</i>) Freshwater algal carbon sequestration (<i>Chen and Hill, UMCES</i>) 	UMCES is the lead on this task.			
3	Slipstream testing of the algal carbon sequestration system	 Slipstream test at 500 L scale (<i>Mroz, HY-TEK</i> <i>Bio, LLC</i>) Slipstream test at 6,800 L scale (<i>Mroz, HY-TEK Bio, LLC</i>) 	HY-TEK Bio, LLC is the lead on this task.			
4	Development of TEA and LCA models to evaluate and guide research and testing activities.	 Develop the frameworks for the TEA and LCA models (<i>Hawkins and Banerjee, Argonne National Lab</i>) Perform hotspot analysis, benchmark against other carbon capture and biofuel processes, (<i>Hawkins and Banerjee, Argonne National Lab</i>) 	Argonne National lab is the lead on this task.			

Gantt Chart

Task	2020-2021		2021-2023					2023			
Budget period	BP 1 (Month 1-15)		BP 2 (M 16-30)					BP3 (M 31- 36)			
Task 1.0 Project Management											
1.1 Project Management Plan											
Milestones 1.1.1											
1.2 Tech Maturation Plan											
Milestones 1.2.1											
Task 2.0 Bench-scale development											
2.1 Seawater system											
Milestones 2.1.1	T										
2.2 Freshwater system											
Milestones 2.2.1	Т										
2.3 Initial 500-L test											
Milestones 2.3.1											
2.4 Frameworks of TEA and LCA											
Milestones 2.4.1											
Task 3.0 Optimization and											
slipstream test											
3.1 Lab-scale optimization											
Milestones 3.1.1											
3.2 Slipstream test at 500 L											
Milestones 3.2.1											
3.3 Initial 6,800-L test											
Milestones 3.3.1											
3.4 TEA and LCA analysis											
Milestones 3.4.1											
Milestones 3.4.2											
Task 4.0 Optimization and full-scale											
test											
4.1 Lab-scale optimization		Ī	1								
Milestones 4.1.1			L								
Milestones 4.1.2											
4.2 Slipstream test at 500 L											
Milestones 4.2.1											
4.3 Slipstream test at 6,800-L											
Milestones 4.3.1											
4.4 Frameworks of TEA and LCA								_			
Milestones 4.4.1											

🖈 Milestone 🔺 Go-No Go

Flow rate data

	Units	Measured/Current Performance	Projected/Target Performance			
Materials Properties		(as applicable)				
Materials of Fabrication for Selective	e Layer	Sintered Stainless-Steel				
Materials of Fabrication for Support	Layer	Sintered Stainless-Steel				
Nominal Thickness of Selective Layer	μm	3,000	3,000			
Membrane Geometry ¹	-	Sintered Stainless-Steel	Sintered Stainless-Steel			
Max Trans-membrane Pressure	bar	0.35	0.35			
Hours tested without significant degr	adation	>1000	>1000			
Contactor Design						
Type of Contactor	-	Gas/Liquid				
Flow Arrangement ²	-	Full-floor	Full-floor			
Packing Density ³	m^{2}/m^{3}	NA	NA			
Shell-side Fluid ⁴	-	algae culture	algae culture			
Contactor Performance						
Temperature	°C	15-42	15-42			
Normalized CO ₂ Flux	kgmol/m ² -s	15 scfm (500L	100 scfm (6800 L			
		reactor)	reactor)			
Type of Driving Force ⁵	-	Liquid Ring Compressor				
Driving Force ⁶ - high potential	Bar	0.65 Bar 0.70 Bar				
Driving Force - low potential	"	0.25 Bar	1.2 Bar			
Delta Driving Force	"	0.08 Bar	0.14 Bar			
CO ₂ Selectivity ⁷	mol/mol	NA	NA			