

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE

Concentrating Solar-thermal Power and Welding/PWHT for High Nickel Alloys

Dr. Rajgopal Vijaykumar, Technology Manager

energy.gov/solar-office

Evaluation of Welding Issues in High Nickel and Stainless Steel March 10, 2021

CSP with Storage is Solar Energy On-Demand

CSP Welding Needs for GEN3 Applications

Gen3 CSP: Raising the Temperature of Solar Thermal Systems

- Phase 2 ended in January 2021 down-selection applications are currently undergoing external merit review and clarification interviews
- \$25M has been carried over to award to down-selected pathway to build MW-scale test facility

Welding/PWHT Requirements for CSP Power Plants

GEN 2 Welding and PWHT

- Hot Nitrate Salt Tanks
 - SS347 H to 565°C
- Receiver
 - H230 to 565°C
- Superheater
 - SS316L to 565 °C

GEN3 Welding and PWHT

- Hot Chloride Salt Tanks
 - 740H/H282 to 750 °C
- Cold Chloride Salt Tanks
 - SS347 H to 565°C
- Piping and welds to valve body and molten salt pump
- Receiver
 - 740H to 760°C
- Primary Heat exchanger
 - 740H to 760°C

US Example of Hot Salt tank

- 110 MWe Crescent Dunes
- 140' (42.7 m) diameter
- 40'(12.1 m) height
- Technical targets:
 - 10-hour storage
 - 2,700 MWth
 - 347H SS construction
 - 540°C hot nitrate salt
 - Type 347H stainless steel for temperatures above 538°C
 - Higher chrome alloys require post weld heat treatment

energy.gov/solar-office

Acknowledgement to Bruce Kelly, Solar Dynamics for permission

Receiver: welding and PWHT needs

- Molten salt Receiver Design and Welding/PWHT
 - Panels with tubes for multiple pass of molten salt
 - Salt passes 8X2 times up and down the influx
 - Tubes welded to headers at the top and bottom
 - Headers welded to a pair of inlet/outlet piping
 - Haynes 230 used for current generation of receivers
 - Current generation of receivers limited by Nitrate salt to 565°C
 - Next generation of receivers use 740H for chloride salt
 - 750°C target

sCO₂ Expander Casing Welding to Pipe

- sCO₂ expander casing
 - 715°C 260 bar inlet T/P
 - H-282 Casing material
 - Hot pipe 740H or H282
 - Cold Pipe Stainless Steel
 - Welding to Pipe at Inlet and Outlet
 - Dissimilar metal welding and PWHT
 - If casing is made of more than one section, will need weld and PWHT

Welding Valves to Pipe

- Welding Valves and Piping
 - CSP power tower between 200-260 m in height
 - Hot pipe from receiver outlet to hot salt tank up to 300 m long
 - Hot pipe from the hot salt tank to Hot salt pump, and from the pump to primary heat exchanger
 - Salt 715 C/20 bar; sCO2 temperature 715 C/260 bar
 - Pipe to pump
 - Pipe to pipe
 - Pipe to elbow/bend

CSP and Welding/PWHT: A Summary

- Welding and PWHT Consideration for Stainless Steel (347H) and High Nickel Alloys
- Welding of high Ni alloys for both GEN-2 and GEN-3
- GEN-2 at Moderate Temperatures; PWHT considerations for hot salt tank
- GEN-3 at 720 C sCO2 inlet temperatures: Welding and PWHT important for CSP industry for these location:
 - Hot Salt Tank
 - Cold Salt tank
 - Receiver
 - Piping
 - Heat exchanger (headers)
 - Turbine welding to Piping
 - Valve and Pump Welding to Piping

10

Office of ENERGY EFFICIENCY
& RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE

Questions?

Rajgopal Vijaykumar

energy.gov/solar-office

Rajgopal.Vijaykumar@ee.doe.gov Technology Manager, CSP